[PDF] [PDF] Calculs sur les matrices - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice AB est inversible d'inverse la matrice C Montrer alors que B est 



[PDF] Calculs sur les matrices - Exo7 - Exercices de mathématiques

Exercice 4 Que peut-on dire d'une matrice A ? Mn(R) qui vérifie tr(A tA) = 0? Indication ? Correction ? Vidéo ? [001064] 2 Inverse Exercice 5



[PDF] MATRICES EXERCICES CORRIGES - Maurimath

MATRICES EXERCICES CORRIGES Exercice n°1 On considère la matrice 1) A l'aide de la calculatrice donner la matrice inverse 1



[PDF] Calcul matriciel

2 2 Exercices 2 5 Corrigé du devoir Soit A une matrice de Mn On dit que A est inversible s'il existe une matrice de Mn notée A?1 telle que



[PDF] Feuille 6 - Calcul matriciel

Exercice corrigé en amphi A est une matrice orthogonale de taille n Montrer que A est inversible et calculer A?1 11 La proposition suivante est-elle vraie 



[PDF] Matrices CORRECTION - Licence de mathématiques Lyon 1

Matrices Exercice 1 Pour une matrice à une ligne et une colonne de ?1(?) on posera ( ) = en déduire que est inversible et donner ?1



[PDF] Corrigé TD 3 Chapitre 1 Semestre 2-2015/2016 - SOS MATH

Corrigé TD 3 Chapitre 1 Semestre 2-2015/2016 Matrice inverse Exercices obligatoires ? Exercice 3-1 Montrer que (3 5



[PDF] TD 4: Matrices - mathuniv-paris13fr

b) La matrice R? est-elle inversible ? Si oui calculer son inverse Exercice 9 En utilisant la méthode du pivot dire si les matrices suivantes sont 

Exo7

Calculs sur les matrices

Corrections d"Arnaud Bodin.

1 Opérations sur les matrices

Exercice 1Effectuer le produit des matrices :

2 1 3 2 11 1 2 1 2 0 3 1 4 0 @11 0 1 41

2 1 21

A0 @a b c c b a

1 1 11

A 0 @1a c 1b b 1c a1 A

SoitA(q) =cosqsinq

sinqcosq pourq2R. CalculerA(q)A(q0)etA(q)npourn>1. SoientAetB2Mn(R)telles que8X2Mn(R), tr(AX) =tr(BX). Montrer queA=B. Que peut-on dire d"une matriceA2Mn(R)qui vérifie tr(AtA) =0 ? Exercice 5Calculer (s"il existe) l"inverse des matrices : a b c d 0 @1 2 1 1 21 2211
A0 @1¯a¯a2 a1¯a a 2a11 A (a2C)0 B

B@0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 01

C CA 0 B

BBBBB@1 1 1

0 1 0 1 1 00 11 C

CCCCCA0

B

BBBBBB@1 2 3n

0 1 2...

... 0 1 2 00 11 C

CCCCCCA

1

SoitA=0

@1 0 2 01 1 12 01 A . CalculerA3A. En déduire queAest inversible puis déterminerA1. 1. Montrer que I+Mest inversible (si(I+M)X=0, calculert(MX)(MX)). 2.

Soit A= (IM)(I+M)1. Montrer quetA=A1.

A= (ai;j)2Mn(R)telle que :

8i=1;:::;njai;ij>å

j6=i ai;j:

Montrer queAest inversible.

Indication pourl"exer cice2 NIl faut connaître les formules de cos(q+q0)et sin(q+q0).Indication pourl"exer cice3 NEssayer avecXla matrice élémentaireEij(des zéros partout sauf le coefficient 1 à lai-ème ligne et laj-ème

colonne).Indication pourl"exer cice4 NAppliquer la formule du produit pour calculer les coefficients diagonaux deAtAIndication pourl"exer cice6 NUne fois que l"on a calculéA2etA3on peut en déduireA1sans calculs.Indication pourl"exer cice7 NMantisymétrique signifietM=M.

1. Si Yest un vecteur alorstYY=kYk2est un réel positif ou nul.

2.IMet(I+M)1commutent.Indication pourl"exer cice8 NPrendre un vecteurX=0

B @x 1... x n1 C Atel queAX=0, considérer le rangi0teljxi0j=maxjxij ji=1;:::;n.3

Correction del"exer cice1 NSiC=ABalors on obtient le coefficientcij(situé à lai-ème ligne et laj-ème colonne deC) en effectuant le

produit scalaire dui-ème vecteur-ligne deAavec lej-éme vecteur colonne deB.

On trouve

2 1 3 2 11 1 2 =3 0 5 1 1 2 0 3 1 4 0 @11 0 1 41

2 1 21

A =1 72 6 5 7 0 @a b c c b a

1 1 11

A 0 @1a c 1b b 1c a1 A =0 @a+b+c a2+b2+c22ac+b2 a+b+c2ac+b2a2+b2+c2

3a+b+c a+b+c1

ACorrection del"exer cice2 NA(q)A(q0) =cosqsinq

sinqcosq cosq0sinq0 sinq0cosq0 cosqcosq0sinqsinq0cosqsinq0sinqcosq0 sinqcosq0+cosqsinq0sinqsinq0+cosqcosq0 cos(q+q0)sin(q+q0) sin(q+q0)cos(q+q0) =A(q+q0)

Bilan :A(q)A(q0) =A(q+q0).

Nous allons montrer par récurrence surn>1 queA(q)n=A(nq).

C"est bien sûr vrai pour n=1.

Fixons n>1 et supposons queA(q)n=A(nq)alors

A(q)n+1=A(q)nA(q) =A(nq)A(q) =A(nq+q) =A((n+1)q)

C"est donc vrai pour tout n>1.

Remarques :

On aurait aussi la formule A(q0)A(q) =A(q+q0) =A(q)A(q0). Les matricesA(q)etA(q0) commutent. En f aitil n"est pas plus dif ficilede montrer que

A(q)1=A(q). On sait aussi que par définitionA(q)0=I. Et on en déduit que pourn2Zon aA(q)n=A(nq).

En ter megéométrique A(q)est la matrice de la rotation d"angleq(centrée à l"origine). On vient de

montrer que si l"on compose un rotation d"angleqavec un rotation d"angleq0alors on obtient une

rotation d"angleq+q0.Correction del"exer cice3 NNotonsEijla matrice élémentaire (des zéros partout sauf le coefficient 1 à lai-ème ligne et laj-ème colonne).

4

SoitA= (aij)2Mn(R). Alors

AEij=0

B

BBBBBBB@0 00a1i0

0 00a2i0

0 00aji0

0 00ani01

C

CCCCCCCA

La seule colonne non nulle est laj-ème colonne.

La trace est la somme des éléments sur la diagonale. Ici le seul élément non nul de la diagonale estaji, on en

déduit donc tr(AEij) =aji (attention à l"inversion des indices). Maintenant prenons deux matricesA;Btelles que tr(AX) =tr(BX)pour toute matriceX. Alors pourX=Eij

on en déduitaji=bji. On fait ceci pour toutes les matrices élémentairesEijavec 16i;j6nce qui implique

A=B.Correction del"exer cice4 NNotonsA= (aij), notonsB=tAsi les coefficients sontB= (bij)alors par définition de la transposée on a

b ij=aji.

Ensuite notonsC=ABalors par définition du produit de matrices le coefficientscijdeCs"obtient par la

formule : c ij=nå k=1a ikbkj:

Appliquons ceci avecB=tA

c ij=nå k=1a ikbkj=nå k=1a ikajk: Et pour un coefficient de la diagonale on ai=jdonc c ii=nå k=1a2ik: La trace étant la somme des coefficients sur la diagonale on a : tr(AtA) =tr(C) =nå i=1c ii=nå i=1nå k=1a2ik=å

16i;k6na2ik:

Si on change l"indicekenjon obtient

tr(AtA) =å

16i;j6na2ij:

Donc cette trace vaut la somme des carrés de tous les coefficients.

Conséquence : si tr(AtA) =0 alors la somme des carréså16i;j6na2ijest nulle donc chaque carréa2ijest nul.

Ainsiaij=0 (pour touti;j) autrement ditAest la matrice nulle.Correction del"exer cice5 N1.si le déterminant adbcest non nul l"inverse est1adbcdb

c a 2. 14 0 @4 04 3 1 2 22 01
A 5

3.si jaj 6=1 alors l"inverse est11a¯a0

@1¯a0 a1+a¯a¯a 0a11 A 4. 13 0 B

B@2 1 1 1

12 1 1

1 12 1

1 1 121

C CA 5. 0 B

BBBBB@11 00

0 11 0

... 0 11

0 0 11

C

CCCCCA

6. 0 B

BBBBBB@12 1 00

12 1 0

12 1 0

(0)12 11 C

CCCCCCACorrection del"exer cice6 NOn trouve

A 2=0 @34 2 111

1 2 01

A etA3=0 @5 0 2 0 3 1 12 41 A Un calcul donneA3A=4I. En factorisant parAon obtientA(A2I) =4I. DoncA14 (A2I) =I, ainsi

Aest inversible et

A 1=14 (A2I) =14 0 @24 2 121
1 211 A

:Correction del"exer cice7 NAvant de commencer la résolution nous allons faire une remarque importante : pourX=0

B BB@x 1 x 2... x n1 C

CCAun vecteur

(considéré comme une matrice à une seule colonne) alors nous allons calculer tXX: t

XX= (x1;x2;;xn)0

B BB@x 1 x 2... x n1 C

CCA=x21+x22++x2n:

On notekXk2=tXX:kXkest lanormeou lalongueurdu vecteurX. De ce calcul on déduit d"une part que tXX>0. Et aussi quetXX>0 si et seulement siXest le vecteur nul. 1. Nous allons montrer que I+Mest inversible en montrant que si un vecteurXvérifie(I+M)X=0 alors X=0. 6

Nous allons estimer

t(MX)(MX)de deux façons. D"une part c"est un produit de la formetYY=kYk2et doncquotesdbs_dbs47.pdfusesText_47
[PDF] matrice nilpotente exercice corrigé

[PDF] Matrice probabiliste, terminale

[PDF] matrice spe maths es

[PDF] Matrice spécialité maths (ES)

[PDF] matrice terminale es exercice

[PDF] matrice trigonalisable exercice corrigé

[PDF] matrice xcas

[PDF] matrice exercice correction

[PDF] matrices diagonales commutent

[PDF] matrices et applications linéaires exercices corrigés

[PDF] matrices et études asymptotiques de processus discrets

[PDF] matrices et suites exercices

[PDF] matrices exercice

[PDF] matrices exercices corrigés pdf

[PDF] matrices exercices corrigés pdf ect