[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

La matrice N n'est donc pas inversible. Correction de l'exercice 9 : 1) On a : T21(-3)A =.



MATRICES EXERCICES CORRIGES MATRICES EXERCICES CORRIGES

MATRICES - EXERCICES CORRIGES. CORRECTION. Exercice n°1. 1) La matrice A est de format 3 4. × puisqu'elle contient 3 lignes et 4 colonnes. 2) 14 a est le nombre 



Feuille dexercices no 6 - Matrices

Conjecturer la forme de Mn puis démontrer le résultat par récurrence. Exercice 7. (Voir la correction ici). Déterminez les matrices triangulaires supérieures T 



Calculs sur les matrices

Correction de l'exercice 1 △. Si C = A×B alors on obtient le coefficient cij (situé à la i-ème ligne et la j-ème colonne de C) en effectuant le.



calcul-matriciel.pdf

Montrer qu'au moins deux des matrices AB



Applications linéaires matrices

https://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Exercices de mathématiques - Exo7

La matrice A est-elle diagonalisable ? Correction ▽. [002593]. 2 Partiel. Exercice 4. Soit A la 



Exercices de mathématiques - Exo7

Démontrer que A est diagonalisable et trouver une matrice P telle que P−1AP soit diagonale. Correction ▽. [002566]. Exercice 5. Soit. A =.



Matrice dune application linéaire

Corrections d'Arnaud Bodin. Exercice 1. Soit R2 muni de la base canonique S = (ij). Soit f : R2 → R2 la projection sur 



CORRECTION DU TD 3 Exercice 1

Pour trouver une base dans laquelle s'exprime sous la forme d'une matrice triangulaire supérieure nous commençons par calculer les puissances de où . On a :.



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

La matrice N n'est donc pas inversible. Correction de l'exercice 9 : 1) On a : T21(-3)A =.



Calculs sur les matrices

Exercice 4. Que peut-on dire d'une matrice A ? Mn(R) qui vérifie tr(A tA) = 0? Indication ?. Correction ?. Vidéo ?. [001064]. 2 Inverse.



MATRICES EXERCICES CORRIGES

MATRICES - EXERCICES CORRIGES. CORRECTION. Exercice n°1. 1) La matrice A est de format 3 4. × puisqu'elle contient 3 lignes et 4 colonnes.



Exercices de mathématiques - Exo7

de Gauss en inversant la matrice des coefficients



Feuille dexercices no 6 - Matrices

1 Calcul matriciel produit de matrices



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

La premiére phase de l'algorithme est terminée. Une ligne de N1 est constituée de 0. La matrice N n'est donc pas inversible. Correction de l'exercice ?? :.



Exercices de mathématiques - Exo7

Correction ?. [002594]. Exercice 5. Soit A la matrice suivante. A = (1 1. 2 1. ) 1. Calculer le polynôme caractéristique et déterminer les valeurs propres 



Exercices de mathématiques - Exo7

Correction ?. [002569]. Exercice 8. Soit A une matrice carrée d'ordre n. On suppose que A est inversible et que ? ? R est une valeur propre de A.



Correction du Contrôle Continu no 2

On en déduit que la matrice C n'est pas inversible. Exercice 2. Considérons le syst`eme : (S). 3x1.

Exo7

Systèmes d"équations linéaires

Corrections d"Arnaud Bodin

Exercice 11.Résoudre de quatre manières dif férentesle système sui vant(par substitution, par la méthode du pi votde

Gauss, en inversant la matrice des coefficients, par la formule de Cramer) :

2x+y=1

3x+7y=2

2.

Choisir la méthode qui v ousparaît la plus rapide pour résoudre, selon les v aleursde a, les systèmes

suivants : ax+y=2 (a2+1)x+2ay=1 (a+1)x+ (a1)y=1 (a1)x+ (a+1)y=1

Résoudre les systèmes suivants

8< :x+yz=0 xy=0 x+4y+z=08 :x+y+2z=5 xyz=1 x+z=38 :3xy+2z=a x+2y3z=b x+2y+z=c

Trouver les solutions de

8>>< >:3x+2z=0

3y+z+3t=0

x+y+z+t=0

2xy+zt=0

Étudier l"existence de solutions du système : 8< :ax+by+z=1 x+aby+z=b x+by+az=1: 1 Discuter et résoudre suivant les valeurs des réelsl,a,b,c,dle système : (S)8 >:(1+l)x+y+z+t=a x+(1+l)y+z+t=b x+y+(1+l)z+t=c x+y+z+(1+l)t=d Z 4

2P(x)dx=aP(2)+bP(3)+gP(4):

Indication pourl"exer cice6 NÉcrire les polynômes sous la formeP(x) =ax3+bx2+cx+d. CalculerR4

2P(x)dxd"une part etaP(2)+

bP(3)+gP(4)d"autre part. L"identification conduit à un système linéaire à quatre équations, d"inconnues

a;b;g.3

Correction del"exer cice1 N1.(a) Par substitution.La première équation s"écrit aussiy=12x. On remplace maintenantydans la

deuxième équation

3x+7y=2=)3x+7(12x) =2=)11x=9=)x=911

Onendéduity:y=12x=12911

=711 . Lasolutiondecesystèmeestdonclecouple(911 ;711 N"oubliez pas de vérifier que votre solution fonctionne ! (b)Par le pivot de Gauss.On garde la ligneL1et on remplace la ligneL2par 2L23L1:

2x+y=1

3x+7y=2()2x+y=1

11y=7 Onobtientunsystèmetriangulaire: onendéduity=711 etalorslapremièrelignepermetd"obtenir x=911 (c)Par les matrices.En terme matriciel le système s"écrit

AX=YavecA=2 1

3 7 X=x y Y=1 2 On trouve la solution du système en inversant la matrice :

X=A1Y:

L"inverse d"une matrice 22 se calcule ainsi

siA=a b c d alorsA1=1adbc db c a Il faut bien sûr que le déterminant detA=a b c d =adbcsoit différent de 0.

Ici on trouve

A 1=111 71
3 2 etX=A11 2 =111 9 7

(d)Par les formules de Cramer.Les formules de Cramer pour un système de deux équations sont les

suivantes si le déterminant vérifieadbc6=0 : ax+by=e cx+dy=f=)x= e b f d a b c d ety= a e c f a b c d

Ce qui donne ici :

x= 1 1 2 7 2 1 3 7 911
ety= 2 1 32
2 1 3 7 =711 2. (a)

A vanttout on re gardes"il e xisteune solution unique, c"est le cas si et seulement si le déterminant

est non nul. Pour le premier système le déterminant esta1 a

2+1 2a

=a21 donc il y a une unique solution si et seulement sia6=1.

Biensûrtouteslesméthodesconduisentaumêmerésultat! Parexempleparsubstitution, enécrivant

la première ligney=2ax, la deuxième ligne devient(a2+1)x+2a(2ax) =1. On en déduit que sia6=1 alorsx=4a1a

21puisy=2a2+a2a

21.
4 Traitons maintenant les cas particuliers. Sia=1 alors le système devient :x+y=2

2x+2y=1

Mais on ne peut avoir en même tempsx+y=2 etx+y=12 . Donc il n"y a pas de solution.

Sia=1 alors le système devient :x+y=2

2x2y=1et il n"y a pas de solution.

(b)

Ici le déterminant est

a+1a1 a1a+1 = (a+1)2(a1)2=4a. Sia6=0 alors on trouve la solution unique(x;y). Par exemple avec la formule de Cramer x= 1a1 1a+1

4a=12aety=

a+1 1 a1 1

4a=12a:

Sia=0 il n"y a pas de solution.Correction del"exer cice2 N1.Remarquons que comme le système est homogène (c"est-à-dire les coef ficientsdu second membre sont

nuls) alors(0;0;0)est une solution du système. Voyons s"il y en a d"autres. Nous faisons semblant

de ne pas voir que la seconde ligne impliquex=yet que le système est en fait très simple à résoudre.

Nous allons appliquer le pivot de Gauss en faisant les opérations suivantes sur les lignesL2 L2L1et

L

3 L3L1:

8< :x+yz=0 xy=0 x+4y+z=0()8 :x+yz=0

2y+z=0

3y+2z=0

On fait maintenantL3 2L3+3L2pour obtenir :

8< :x+yz=0

2y+z=0

7z=0 En partant de la dernière ligne on trouvez=0, puis en remontanty=0, puisx=0. Conclusion l"unique solution de ce système est(0;0;0). 2.

On applique le pi votde Gauss L2 L2L1etL3 L3L1:

8< :x+y+2z=5 xyz=1 x+z=3()8 :x+y+2z=5

2y3z=4

yz=2

PuisL3 2L3L2pour obtenir un système équivalent qui est triangulaire donc facile à résoudre :

8< :x+y+2z=5

2y3z=4

z=0()8 :x=3 y=2 z=0 On n"oublie pas de vérifier que c"est une solution du système initial. 3. On f aitles opérations L2 3L2+L1etL3 3L3L1pour obtenir : 8< :3xy+2z=a x+2y3z=b x+2y+z=c()8 :3xy+2z=a

5y7z=3b+a

7y+z=3ca

5 Puis on faitL3 5L37L2, ce qui donne un système triangulaire : 8< :3xy+2z=a

5y7z=3b+a

54z=5(3ca)7(3b+a)

En partant de la fin on en déduit :z=154

(12a21b+15c)puis en remontant cela donne 8< :x=118 (8a+5bc) y=118 (2a+b+7c) z=118 (4a7b+5c)Correction del"exer cice3 NOn commence par simplifier le système : on place la ligne L3en première position pour le pivot de Gauss ; on réordonne les v ariablesdans l"ordre : y;t;x;zpour profiter des lignes déjà simples. 8>>< >:y+t+x+z=0

3y+3t+z=0

yt+2x+z=0

3x+2z=0

On commence le pivot de Gauss avec les opérationL2 L23L1etL3 L3+L1pour obtenir : 8>>< >:y+t+x+z=0

3x2z=0

3x+2z=0

3x+2z=0

Les 3 dernières lignes sont identiques, on se ramène donc à un système avec 2 équations et 4 inconnues :

y+t+x+z=0

3x+2z=0

Nous choisissonsxetycomme paramètres, alorsz=32 xett=xyz=12 xy. Les solutions du système sont donc les x;y;z=32 x;t=12

xyjx;y2RCorrection del"exer cice4 N1.Pour éviter d"a voirà di viserpar aon réordonne nos lignes puis on applique la méthode du pivot :

8< :x+by+az=1L1x+aby+z=bL2ax+by+z=1L3()8 :x+by+az=1L1b(a1)y+ (1a)z=b1L2 L2L1b(1a)y+ (1a2)z=1aL3 L3aL1 On fait ensuiteL3 L3+L2pour obtenir un système triangulaire équivalent au système initial : 8< :x+by+az=1 b(a1)y+ (1a)z=b1 (2aa2)z=ba 6

2.Nous allons maintenant discuter de l"e xistencedes solutions. Remarquons d"abord que 2 aa2=

(a1)(a+2). Donc sia6=1 eta6=2 alors 2aa26=0 doncz=ab(a1)(a+2). On a donc trouvé la valeur dez. La deuxième ligne du système triangulaire estb(a1)y+(1a)z=b1 on sait déjà a16=0. Sib6=0 alors, en reportant la valeur dezobtenue, on trouve la valeury=b1(1a)zb(a1). Puis avec la première ligne on en déduit aussix=1byaz. Donc sia6=1 eta6=2 etb6=0 alors il existe une unique solution(x;y;z). 3. Il f autmaintenant s"occuper des cas particuliers. (a) Si a=1 alors notre système triangulaire devient : 8< :x+by+z=1 0=b1 0=b1 Sib6=1 il n"y a pas de solution. Sia=1 etb=1 alors il ne reste plus que l"équationx+y+z=1.quotesdbs_dbs47.pdfusesText_47
[PDF] matrices diagonales commutent

[PDF] matrices et applications linéaires exercices corrigés

[PDF] matrices et études asymptotiques de processus discrets

[PDF] matrices et suites exercices

[PDF] matrices exercice

[PDF] matrices exercices corrigés pdf

[PDF] matrices exercices corrigés pdf ect

[PDF] matrices qui commutent definition

[PDF] MATRICES SPÉ MATH TERMINALE ES

[PDF] Matrices Spécialité Maths

[PDF] Matrices système maths spe

[PDF] matrices terminale es spé maths

[PDF] Matrices, valeurs propres et vecteurs propres

[PDF] matriochka signification

[PDF] matrix hair careers