[PDF] Fiche aide-mémoire 7 : Commutant dune matrice. 1 Des remarques





Previous PDF Next PDF



Fiche aide-mémoire 7 : Commutant dune matrice. 1 Des remarques

Définition : Soit A une matrice carrée d'ordre n. On appelle commutant de A l'ensemble des matrices M qui commutent avec A c'est-à-dire telles que AM =.



Chapitre 13 : Matrices

3 févr. 2010 De même lorsque p = 1



Chapitre 9 : Matrices

Préparation des Khôlles. 2013-2014. Chapitre 9 : Matrices. Exercice type 1. Déterminer toutes les matrices de M2 (R) qui commutent avec A = 2.



les matrices sur Exo7

De même une matrice qui n'a qu'une seule colonne (p = 1) est appelée Soient A et B deux éléments de Mn() qui commutent



1 Définitions et propriétés de base

l'exponentielle de matrices et ses applications en particulier au groupe linéaire. prouvable avant car exp B est un polynôme en B qui commute avec A



Les matrices -2013-2014

1- Définitions et ensembles de matrices. Définition d'une matrice. ... Théorème ; formule du binôme de Newton pour des matrices qui commutent.



Exponentielle de matrices

Soit n ? N comme les deux matrices commutent



Polynômes dendomorphismes

Un élément f ? (E) est un endomorphisme de E. Dans ce chapitre E sera de dimension finie. 1.1. Définition. Polynôme de matrice. Soit 



Commutant dune matrice

matrices M de Mn(IK) qui commutent avec A : C(A) = {M ? Mn(IK) AM = MA}. (a) Montrer que M commute avec les matrices Eii. ... Par définition



MATRICES

26 oct. 2014 Définition analytique d'une application linéaire ... Commutant d'une matrice ou d'un ensemble de matrices. 11. Exponentielle d'une matrice.

F. HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015

Fiche aide-mémoire 7 :

Commutant d"une matrice.

Beaucoup de sujets de concours s"intéressent à la détermination du commutant d"une matriceA:

Définition :

SoitAune matrice carrée d"ordren.

On appellecommutant deAl"ensemble des matricesMqui commutent avecA, c"est-à-dire telles queAM=

MA. On le note généralementC(A). Ainsi :

C(A) =fMatricesMtelles queAM=MAg=fMjAM=MAg:

Les questions concernant le commutant sont souvent les mêmes. Les résultats suivant sont à retenir.

1 Des remarques pour commencer

•La matrice nulle deMn(R)appartient àC(A). En effet,0A= 0etA0 = 0. •La matrice identité deMn(R)appartient àC(A). En effet,AI=AetIA=A. •La matriceAappartient àC(A). En effet,A:A=A2etA:A=A2(!). •Les puissances deAappartiennent àC(A). En effet,A:Ak=Ak+1etAk:A=Ak+1, ce8k2N.

2 Le commutant deAest un sous-espace vectoriel deMn(R).

Ce résultat se démontre de deux façons :

2.1 Démonstration directe

•SiMcommute avec la matriceAqui est carrée d"ordren, alors les produitsAMetMAont tous les deux

un sens :Mest donc carrée d"ordren. Ainsi,C(A) Mn(R). •La matrice nulle (au choix, ou l"identité, ouA) appartient àC(A), doncC(A)6=;. •SoientMetNdeux matrices deC(A). Alors par définitionAM=MAetAN=NA. Montrons que M+N2C(A). CommeAM=MAetAN=NA, on aA(M+N) =AM+AN=MA+NA= (M+N):A, ce qui montre queM+N2C(A). •SoitMune matrice deC(A)et2R. Alors par définitionAM=MA. Montrons queM2C(A). Comme AM=MA, et que2Ron aA(M) =(AM) =(MA) = (M)A. Ainsi,M2C(A). •Finalement,C(A)est un sous-espace vectoriel deMn(R).

2.2 Le commutant vu comme le noyau d"une application linéaire.

On remarque, comme précédemment, queC(A) Mn(R). On considère l"application

A:Mn(R)! Mn(R)

M7!AMMA:

•'Aest un endomorphisme deMn(R). En effet, on remarque déjà que l"ensemble de départ et d"arrivée de

Asont les mêmes. Il suffit donc de montrer que'Aest linéaire. SoientMetNdeux matrices carrées d"ordren,

etdeux réels. Alors'A(M+N) =A(M+N)(M+N)A=AM+ANMANAcaret sont des réels. D"autre part,'A(M)+'A(N) =(AMMA)+(ANNA) =AMMA+ANNA et donc'A(M+N) ='A(M) +'A(N). Ainsi,'est linéaire. •Ker('A) =C(A). En effet, soitM2Ker('A). AlorsAMMA= 0, doncAM=MA:M2C(A)et donc Ker('A)C(A). Réciproquement, soitM2C(A). AlorsAM=MA, doncAMMA= 0ce qui prouve queM2Ker('A)et donc queC(A)Ker('A). Finalement, on a bien Ker('A) =C(A). •C(A)est un sous-espace vectoriel deMn(R): c"est le noyau d"un endomorphisme deMn(R). 1/2 F. HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015

3 Commutant d"une matrice diagonale

Pour trouver le commutant d"une matrice diagonale (ou d"une matrice "simple" au sens où elle comporte

beaucoup de zéros), on effectue généralement les calculs coefficient par coefficient (ce qui amène à résoudre

un système den2équations àn2inconnues.

Il peut être utile de retenir que :

•Multiplier à droite une matriceMpar une matrice diagonaleD(i.e. faire le produitMD) revient à multiplier

les colonnes deMpar les coefficients correspondants deD.

•Multiplier à gauche une matriceMpar une matrice diagonaleD(i.e. faire le produitDM) revient à multi-

plier les lignes deMpar les coefficients correspondants deD.

Exemple :Cherchons le commutant deD:=0

@0 0 0 01 0

0 0 11

A SoitMune matrice deC(D). CherchonsMsous la formeM=0 @a b c d e f g h i1 A . On aMD=0 @0b c 0e f 0h i1 A et DM=0 @0 0 0 def g h i1 A doncMD=DM()( b= 0; c= 0;d= 0 f=f; g= 0; h= 0()M=0 @a0 0 0e0 0 0i1 A

Finalement,C(D)est formé de toutes les matrices d"ordre3diagonales. C"est donc un sous-espace vectoriel

deM3(R)de dimension3. Précisément, une base en est0 @0 @1 0 0 0 0 0

0 0 01

A ;0 @0 0 0 0 1 0

0 0 01

A ;0 @0 0 0 0 0 0

0 0 11

A1 A (on a vu

que cette famille était génératrice puisque on a trouvé queMs"écritafois la première plusefois la deuxième

plusifois la troisième), et on montre aisément qu"elle est libre). Remarque :En fait, dans le cas oùDest diagonale,et que toutes les valeurs propres deDsont deux

à deux distinctes(i.e. les coefficients diagonaux deDsont tous différents),C(D)est l"ensemble des matrices

diagonales. Dans ce cas, on peut même montrer queI;D;D2;:::;Dn1est une base deC(D)(rappelons que nest l"ordre deD). Exemple (retour). Montrons que(I;D;D2)est une base deC(D). Comme c"est une famille de trois vecteurs

et queC(D)est de dimension trois, il suffit de montrer que la famille est libre. Soienta;b;ctrois réels

tels queaI+bD+cD2= 0. CommeaI+bD+cD2=0 @a0 0 0a0 0 0a1 A +0 @0 0 0 0b0 0 0b1 A +0 @0 0 0 0c0 0 0c1 A 0 @a0 0

0ab+c0

0 0a+b+c1

A ,aI+bD+cD2= 0donne immédiatement8 :a= 0 b+c= 0 b+c= 0, donca=b=c= 0: la famille(I;D;D2)est libre. Finalement,(I;D;D2)est une base deC(D).

4 Cas général : obtention du commutant par diagonalisation!

SiAest diagonalisable, on peut trouver une matricePinversible, et une matrice diagonaleD, telles queA=

PDP

1. On remarque alors queAM=MA()PDP1M=MPDP1()DP1M=P1MPDP1()DP1MP=

P

1MPD()DN=NDoùN=P1MP.

Ainsi, on a l"équivalenceM2C(A)()N2C(D)oùN=P1MPetA=PDP1. On peut donc déduire le commutant deAde celui deD. Remarque :dans tous les cas, laissez-vous guider par l"énoncé! 2/2quotesdbs_dbs47.pdfusesText_47
[PDF] MATRICES SPÉ MATH TERMINALE ES

[PDF] Matrices Spécialité Maths

[PDF] Matrices système maths spe

[PDF] matrices terminale es spé maths

[PDF] Matrices, valeurs propres et vecteurs propres

[PDF] matriochka signification

[PDF] matrix hair careers

[PDF] mattek sands blessure

[PDF] mattek sands blessure wimbledon

[PDF] mattek sands genou

[PDF] mattek sands knee

[PDF] mattek-sands wimbledon

[PDF] Maturation de l’ARN prémessager en ARN messager : l’épissage

[PDF] Mature d'un mot

[PDF] mature definition