[PDF] Introduction aux probabilités et à la statistique Jean Bérard





Previous PDF Next PDF



CORRIGE

Aujourd'hui 100 millions de tonnes d'ammoniac sont produites par an par ce procédé : les réactifs sont introduits en proportions stœchiométriques



Introduction aux probabilités et à la statistique Jean Bérard

2.6.10 Espérance et variance des lois usuelles . les résultats des 100 premiers lancers influent sur le résultat du 101-ème ... ABC ACB CAB CBA BAC BCA.



X YH X YH

Plonge grand bac. •Construction inox 304 L. •Dessus angles rayonnés 3 bords anti ruissellement



Leçons de chimie - Agrégation de physique

25.1 Variance : nombre de degrés de liberté d'un syst`eme chimique . 100 manipulations de chimie générale et analytique Mespl`ede



Sujet du bac S Physique-Chimie Spécialité 2016 - Am. du Sud

Citer au moins un adjectif pour qualifier l'accélération du système. 0. 2. 4. 6. 8. 10. 12. 0. 100.



PLAN NATIONAL DE GESTION DES DÉCHETS

de gestion des déchets ou s'ils le sont



Enjeux du développement de lélectromobilité pour le système

électriques en France toutes technologies confondues : véhicules 100 % électriques (VEB) et tés selon une variante médiane (basée sur le scénario.



Comment améliorer le rendement dune réaction chimique ?

100°C. • Température d'ébullition du toluène : 110°C. • Température d'ébullition du mélange : 84°C ! ? On ajoute 30 mL de toluène dans le ballon.



passerelle-2005.pdf

ADMISSIONS SUR TITRE BAC + 3/4 EN 2E ANNÉE (PASSERELLE 2) 18 élèves par classe / 18 de capacité maximale soit 100 %. Musique ... Chimie/Pharmaceutique.



Chapitre 12 : Travail et Énergie cinétique

a une contribution nulle au mouvement d'un point de vue énergétique on dit qu'elle ne travaille pas. Poisson Florian. Spécialité Physique-Chimie 1ère ...

Introduction aux probabilités et à la statistique Jean Bérard

Introduction aux probabilités

et à la statistique

Jean Bérard

2

Avertissement

Ces notes sont en cours d"élaboration. Il se peut donc qu"y subsistent un certain nombre d"erreurs, d"incohérences, et/ou de passages inachevés.

Table des matières

Introduction 7

1 Le modèle probabiliste 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Le point de vue formel . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Mais que représente exactement ce formalisme? . . . . . . . . . . . . 16

1.3.1 Espace des possibles et choix du niveau de description . . . . 16

1.3.2 Sens concret - sens formel . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Signification concrète de la probabilité . . . . . . . . . . . . . 23

1.4 Probabilité et événements . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.1 Probabilité d"un événement . . . . . . . . . . . . . . . . . . . 30

1.4.2 Probabilité et opérations sur les événements . . . . . . . . . . 32

1.4.3 Quelques exemples de modèles probabilistes . . . . . . . . . . 35

1.5 Probabilités conditionnelles . . . . . . . . . . . . . . . . . . . . . . . 40

1.5.1 Notions de dépendance et d"indépendance entre événements . 46

1.5.2 Effet de loupe et biais de sélection . . . . . . . . . . . . . . . 54

1.5.3 Représentation en arbre des modèles probabilistes . . . . . . . 60

1.6 Construire un modèle approprié . . . . . . . . . . . . . . . . . . . . . 70

1.6.1 Quelques pistes . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.6.2 Compatibilité de deux modèles . . . . . . . . . . . . . . . . . 72

1.6.3 De l"importance de décrire explicitement le modèle . . . . . . 73

1.7 Un exemple fondamental : la succession d"épreuves indépendantes . . 74

1.7.1 Une histoire de singe . . . . . . . . . . . . . . . . . . . . . . . 83

1.7.2 Tout résultat est exceptionnel! . . . . . . . . . . . . . . . . . 86

1.7.3 Succession indépendante? . . . . . . . . . . . . . . . . . . . . 87

1.8 Coïncidences troublantes . . . . . . . . . . . . . . . . . . . . . . . . . 89

1.8.1 C"est vraiment incroyable! . . . . . . . . . . . . . . . . . . . . 89

1.8.2 Ce que l"on observe est presque toujours improbable . . . . . 90

1.8.3 Des coïcidences surprenantes doivent se produire . . . . . . . 90

1.8.4 Attention à l"interprétation . . . . . . . . . . . . . . . . . . . 91

4

1.8.5 Quand s"étonner? . . . . . . . . . . . . . . . . . . . . . . . . 91

1.8.6 Un magicien doué . . . . . . . . . . . . . . . . . . . . . . . . 93

1.9 Auto-évaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1.10 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2 Variables aléatoires 121

2.1 Introduction et définition . . . . . . . . . . . . . . . . . . . . . . . . 121

2.2 Loi d"une variable aléatoire . . . . . . . . . . . . . . . . . . . . . . . 125

2.2.1 Le point de vue formel pour les variables aléatoires discrètes . 125

2.2.2 La loi dans l"interprétation fréquentielle de la probabilité -

notion de loi empirique . . . . . . . . . . . . . . . . . . . . . . 128

2.2.3 Fonction de répartition d"une loi discrète . . . . . . . . . . . . 131

2.2.4 Représentations graphiques . . . . . . . . . . . . . . . . . . . 131

2.2.5 Quelques lois discrètes classiques . . . . . . . . . . . . . . . . 145

2.2.6 Variables aléatoires et lois continues . . . . . . . . . . . . . . 153

2.2.7 Exemples de lois continues . . . . . . . . . . . . . . . . . . . . 166

2.3 Loi jointe de plusieurs variables aléatoires, vecteurs aléatoires . . . . 170

2.3.1 Indépendance de variables aléatoires, cas discret . . . . . . . . 171

2.3.2 Vecteur aléatoire continu . . . . . . . . . . . . . . . . . . . . . 172

2.3.3 Somme de variables aléatoires indépendantes . . . . . . . . . 172

2.4 Opérations sur les lois de probabilité . . . . . . . . . . . . . . . . . . 175

2.5 Loi d"une fonction d"une variable aléatoire . . . . . . . . . . . . . . . 176

2.6 Espérance et variance . . . . . . . . . . . . . . . . . . . . . . . . . . 177

2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

2.6.2 Espérance et moyenne, loi empirique . . . . . . . . . . . . . . 180

2.6.3 Le raisonnement de Huygens * . . . . . . . . . . . . . . . . . 181

2.6.4 L"utilité espérée * . . . . . . . . . . . . . . . . . . . . . . . . . 181

2.6.5 L"espérance comme indicateur de position . . . . . . . . . . . 182

2.6.6 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

2.6.7 L"inégalité de Markov . . . . . . . . . . . . . . . . . . . . . . 197

2.6.8 Opérations algébriques : linéarité de l"espérance . . . . . . . . 200

2.6.9 Opérations algébriques : espérance d"un produit . . . . . . . . 204

2.6.10 Espérance et variance des lois usuelles . . . . . . . . . . . . . 210

2.6.11 Régression linéaire . . . . . . . . . . . . . . . . . . . . . . . . 215

2.7 Probabilité, loi et espérance conditionnelles . . . . . . . . . . . . . . 226

2.8 Conditionnement par une variable aléatoire de loi continue . . . . . . 229

2.9 Transformées de Laplace et de Fourier d"une loi de probabilité * . . . 230

2.9.1 Fonction génératrice . . . . . . . . . . . . . . . . . . . . . . . 230

2.9.2 Transformée de Laplace . . . . . . . . . . . . . . . . . . . . . 231

2.9.3 Transformée de Fourier . . . . . . . . . . . . . . . . . . . . . 232

5

2.9.4 Transformées des lois classiques . . . . . . . . . . . . . . . . . 232

2.10 Quelques mots de théorie de l"information * . . . . . . . . . . . . . . 233

2.10.1 Entropie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

2.10.2 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . 234

2.11 Quelques mots sur le hasard simulé . . . . . . . . . . . . . . . . . . . 241

2.12 Les lois de Benford et de Zipf . . . . . . . . . . . . . . . . . . . . . . 241

2.12.1 La loi de Benford . . . . . . . . . . . . . . . . . . . . . . . . . 241

2.12.2 Lois de Zipf-Mandelbrot et de Pareto . . . . . . . . . . . . . . 241

2.13 Auto-évaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

2.14 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

3 Loi des grands nombres 285

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

3.2 Loi faible des grands nombres . . . . . . . . . . . . . . . . . . . . . . 285

3.2.1 Cadre et hypothèses . . . . . . . . . . . . . . . . . . . . . . . 285

3.2.2 Enoncé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

3.2.3 Preuve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

3.2.4 Qu"est-ce qu"un grand nombre? . . . . . . . . . . . . . . . . . 288

3.2.5 Attention à l"approximation . . . . . . . . . . . . . . . . . . . 295

3.2.6 Loi forte des grands nombres . . . . . . . . . . . . . . . . . . 295

3.2.7 Robustesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

3.2.8 L"hypothèse de répétition indépendante . . . . . . . . . . . . 304

3.2.9 L"existence de l"espérance . . . . . . . . . . . . . . . . . . . . 324

3.2.10 Position de la loi des grands nombres . . . . . . . . . . . . . . 329

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

3.3.1 L"assurance et la mutualisation du risque . . . . . . . . . . . 333

3.3.2 Sondages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

3.3.3 Mécanique statistique . . . . . . . . . . . . . . . . . . . . . . 335

3.3.4 Méthodes de Monte-Carlo . . . . . . . . . . . . . . . . . . . . 336

3.4 Inégalités de déviation . . . . . . . . . . . . . . . . . . . . . . . . . . 338

3.5 Convergence de la loi empirique . . . . . . . . . . . . . . . . . . . . . 338

3.5.1 Convergence des histogrammes . . . . . . . . . . . . . . . . . 338

3.5.2 Le théorème de Glivenko-Cantelli . . . . . . . . . . . . . . . . 338

3.6 Auto-évaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

3.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

4 La courbe en cloche 341

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

4.2 Les lois gaussiennes unidimensionnelles . . . . . . . . . . . . . . . . . 341

4.3 Le théorème de la limite centrale . . . . . . . . . . . . . . . . . . . . 348

6

4.3.1 Cadre et énoncé . . . . . . . . . . . . . . . . . . . . . . . . . 348

4.3.2 Des illustrations lorsque la loi deX1++XNest connue

explicitement . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

4.3.3 Des illustrations lorsque la loi deX1++XNn"est pas connue

explicitement . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

4.3.4 Deux erreurs fréquentes . . . . . . . . . . . . . . . . . . . . . 369

4.3.5 Preuve du théorème de la limite centrale . . . . . . . . . . . . 374

4.3.6 Le théorème de la limite centrale et la loi des grands nombres 374

4.3.7 Attention à l"échelle . . . . . . . . . . . . . . . . . . . . . . . 378

4.3.8 Quantification de la convergence dans le théorème de la limite

centrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

4.3.9 Robustesse du théorème de la limite centrale . . . . . . . . . 382

4.3.10 Le théorème de la limite centrale et le caractère universel (?)

de la loi gaussienne . . . . . . . . . . . . . . . . . . . . . . . . 400

4.4 Des exemples concrets . . . . . . . . . . . . . . . . . . . . . . . . . . 402

4.4.1 Des exemples approximativement gaussiens . . . . . . . . . . 403

4.4.2 Des exemples non gaussiens, même approximativement . . . . 417

4.4.3 Phynances! . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

4.5 Quelques applications du TCL . . . . . . . . . . . . . . . . . . . . . 434

4.5.1 Sondages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

4.5.2 Méthodes de Monte-Carlo . . . . . . . . . . . . . . . . . . . . 436

4.6 Lois gaussiennes multidimensionnelles - Vecteurs aléatoires gaussiens 436

4.6.1 Vecteurs gaussiens et régression linéaire . . . . . . . . . . . . 436

4.6.2 Le principe du test du chi-deux . . . . . . . . . . . . . . . . . 436

4.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

5 Bibliographie 439

5.1 Ouvrages recommandés pour travailler ce cours. . . . . . . . . . . . . 439

5.2 Ouvrages et articles de référence. . . . . . . . . . . . . . . . . . . . . 440

Introduction

La théorie des probabilités constitue un cadre mathématique pour la description du hasard et de la variabilité, ainsi que pour le raisonnement en univers incertain. Elle forme un tout cohérent dont les concepts, les méthodes et les résultats interviennent dans de très nombreux domaines des sciences et des technologies, parfois de manière fondamentale. En voici, à titre de motivation pour ce cours, une petite liste non- exhaustive. En physique, la description de la nature à l"échelle microscopique, donnée par la mécanique quantique, est de nature probabiliste : seule la probabilité pour une particule de se trouver dans tel ou tel état est accessible à la théorie. En physique encore, la description des systèmes constitués d"un très grand nombre de particules (ce qui est le cas de tous les systèmes physiques macroscopiques) s"appuie générale- ment sur une modélisation probabiliste du comportement individuel des particules (mécanique statistique). En biologie, dans le domaine médical ou environnemental, la

prise en compte de la variabilité naturelle des phénomènes étudiés nécessite souvent,

et à toute sorte de niveaux, le recours à la modélisation probabiliste (il peut aussi bien s"agir d"étudier des mécanismes moléculaires comme la réplication de l"ADN, le développement morphologique d"un organisme, sa réponse à un traitement médi- cal, ou encore la propagation des épidémies ou des feux de forêt, la croissance et les migrations de populations animales, la diffusion de polluants dans un sol, les phé- nomènes de crue, etc...). La modélisation probabiliste s"applique aussi au traitement des données et des signaux (codage, compression, débruitage), ou à l"analyse des er- reurs de mesure. Elle intervient également dans le domaine économique et industriel (fiabilité et performance des systèmes et des procédés, dont le comportement comme l"environnement de fonctionnement sont variables, gestion des approvisionnements et des stocks, politiques d"assurance, prévisions économiques, décisions d"investisse- ment, et plus généralement évaluation et gestion du risque). L"intelligence artificielle, et notamment les techniques d"apprentissage automatisé et d"extraction de données (reconnaissance de formes, traitement d"image, systèmes experts, fouille de données, réseaux neuronaux...) reposent également, pour une part sur une modélisation pro- babiliste de l"information qu"ils traitent. Mentionnons enfin l"utilisation devenue in- 8 contournable du "hasard simulé» par ordinateur, qu"il s"agisse d"étudierin silico le comportement d"un système réel que l"on a modélisé, d"employer un algorithme randomisé (d"optimisation, de tri, de vérification,... ), ou de résoudre un problème numérique à l"aide d"une méthode de Monte-Carlo.

Un point de vocabulaire

Bien que les frontières délimitant les deux domaines ne puissent pas toujours être

très précisément tracées, on distingue en général lathéorie des probabilitéset la

statistique, en disant que la première a pour objet principal de définir des modèles mathématiques du hasard et de l"incertitude, et d"étudier leurs propriétés, tandis que la seconde a notamment pour but de confronter ces modèles mathématiques

à la réalité, en particulier à l"expérience et aux données observées, afin de choisir,

d"ajuster et de valider les modèles, et de les exploiter pour effectuer des prévisions, tester des hypothèses, prendre des décisions.

Objectifs du cours

Tous les exemples cités ci-dessus sont d"un niveau assez (voire très) élevé, et se rattachent à des domaines scientifiques spécialisés qu"il est bien entendu impossible d"aborder ou même de résumer dans un cours de base comme celui-ci. L"objectif principal de ce cours, qui requiert idéalement une première familiarisation, à un niveau intuitif avec les notions probabilistes, est de vous fournir des bases solides et correctement formalisées en probabilités. Il s"agira essentiellement d"assimiler les principaux outils conceptuels permettant d"aborder la modélisation mathématique de l"incertitude, du hasard et de la variabilité, ainsi qu"un certain nombre de tech- niques qui s"y rapportent. Après ce cours, vous devriez être en mesure de comprendre comment s"articulent les différents aspects (formalisation, intégration des données, résolution mathématique et/ou simulation, validation, exploitation, appréciation des limites de validité) de la modélisation de situations simples. Quelques objectifs plus spécifiques : - dépasser le stade des raisonnements approximatifs et parfois douteux auxquels les étudiants sont bien souvent habitués quand il s"agit de probabilités; - aller au-delà des conclusions parfois insuffisantes ou même incohérentes que le simple "bon sens» permet de tirer; - être à l"aise vis-à-vis de l"utilisation des probabilités dans des domaines plus spécialisés, lorsque vous les rencontrerez. Fournir des bases, notamment destinées à permettre un approfondissement et une spécialisation ultérieurs n"exclut pas, bien entendu, de présenter des exemples simples illustrant les applications potentielles dans quelques-uns des domaines plus avancés évoqués précédemment. D"autre part, posséder une connaissance correcte

Introduction9

des notions abordées dans ce cours présente également un intérêt du point de vue de la la formation des citoyens, à l"heure où les arguments fondés sur des modèles et des statistiques de toute nature (économique, sociale, médicale, environnemen- tale,...) sont au coeur des débats, bien que trop peu d"individus possédent un bagage conceptuel suffisant pour soumettre ces arguments à une analyse critique informée et raisonnée. Le niveau mathématique assez modeste dont nous nous contenterons ne doit pas masquer la véritable difficulté - celle sur laquelle l"effort doit porter principalement - que représente la compréhension en profondeur des notions abordées. Ce cours est entre autres un cours de mathématiques, où s"imposent donc des normes élevées de précision et de rigueur, mais les objets mathématiques qui y sont manipulés sont

destinés à modéliser certains aspects de la réalité. Ainsi, toutes les notions abordées

présentent un double aspect, formel et concret, ce qui rend leur maîtrise difficile à acquérir. De nombreux exemples serviront à illustrer le propos, mais il est indispensable de dépasser le stade de la simple compréhension des exemples pour pouvoir utiliser efficacement les notions abordées dans des situations nouvelles.

Dés, cartes, et pièces de monnaie

Les cours de probabilités auxquels vous avez pu être confrontés font souvent la part belle aux exemples issus des jeux de hasard, tirages de carte, roulette, loteries etquotesdbs_dbs30.pdfusesText_36
[PDF] 100 variante bac chimie organica

[PDF] 100 variante bac fizica

[PDF] 100 variante bac geografie

[PDF] 100 variante bac informatica 2009

[PDF] 100 variante bac istorie

[PDF] 100 variante bac mate 2009

[PDF] 100 variante bac matematica 2009

[PDF] 100 variante bac matematica m2

[PDF] 100 variante bac matematica m2 2009

[PDF] 100 variante bac matematica m2 rezolvate

[PDF] 100 variante bac romana 2015 pdf

[PDF] 100 variante bac romana 2016

[PDF] 100 variante bacalaureat romana

[PDF] 100 variante chimie organica 2009 rezolvate

[PDF] 100 variante de subiecte geografie 2007