[PDF] Méthodes numériques de résolution déquations différentielles





Previous PDF Next PDF



Méthodes numériques de résolution déquations différentielles

3.3.2 Méthodes de Taylor d'ordre plus élevés . Une équation différentielle est une équation qui dépend d'une variable t et d'une fonction x(t).



Ift 2421 Chapitre 6 Résolution des équations différentielles

Ordre d'une équation différentielle : dérivée la plus élevée. Équation différentielle linéaire : Appliquer la méthode de Taylor avec un pas h = 0.1.



´Equations différentielles - Cours no 6 Approximation numérique

En reportant dans l'équation différentielle on aboutit `a la méthode d'Euler : On écrit les développement de Taylor avec reste intégral.



Plan du cours de méthodes numériques

Stabilité d'une équation différentielle x scalaire : équation différentielle ordinaire (x = le temps très souvent) ... Méthodes de Taylor d'ordre n.



´Equations Différentielles

(1) Solution de l'équation différentielle : s(t)=1 - e? 1 Exprimez la formule permettant de la résoudre par la méthode de Taylor (avec le même pas).



Diapositive 1

Une équation différentielle ordinaire (EDO) est une relation faisant Théorème Pour différentiable en et en la méthode de Taylor d'ordre 2 est une.



Analyse numérique : Résolution numérique des équations

22 mars 2013 2 Dérivation numérique. 3 Méthode des différences finies. Analyse numérique (Pagora 1A). Résolution des équations différentielles.



ED1 - Equation Différentielle

9 janv. 2017 Méthodes numériques pour les Equations différentielles . ... 2.2 Méthode de Taylor d'ordre p ... 4.3 2eme méthode pour le calcul de etA.



Méthodes numériques pour les équations différentielles

Approximation numérique des équations différentielles ordinaires l'inégalité de Taylor-Lagrange ainsi que de la formule de Taylor avec reste intégral ( ...



1 Cahier_de_TD

Exercice 31 : Equation différentielle simple méthode de Taylor. 1. Calculez la valeur que prend g(x) en x = {2

Méthodes numériques de résolution d"équations différentielles

Brian Stout

brian.stout@fresnel.fr

Université de Provence

Institut Fresnel, Case 161 Faculté de St Jérôme

Marseille, France

Fevrier 2007

Table des matières

1 Problème de Cauchy :2

2 Transformations vers un problème de Cauchy3

2.1 Traitement d"une équation différentielle d"ordre>1. . . . . . . . . . . . . . . . . 3

2.2 Equations différentielles à coefficients constants. . . . . . . . . . . . . . . . . . . 4

2.3 Exemple - Vol d"un point solide dans un champ de pesanteur.. . . . . . . . . . . 4

2.4 Détermination des paramètres initiaux. . . . . . . . . . . . . . . . . . . . . . . . 7

3 Solutions numériques des équations différentielles9

3.1 Formulation générale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Méthode itérative de Picard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Exemple : méthode de Picard pour résoudre l"équationd

dty(t) =t-y(t). 11

3.3 Méthodes basées sur la série de Taylor. . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Méthode d"Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Méthodes de Taylor d"ordre plus élevés. . . . . . . . . . . . . . . . . . . . 14

3.4 Runge Kutta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Runge Kutta d"ordre 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Runge Kutta : ordres 3 et 4. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.3 Runge Kutta à pas adaptatif et méthodes prédiction correction. . . . . . 21

3.5 Fonctions Euler et Runge Kutta adaptée ày?Rm. . . . . . . . . . . . . . . . . 21

4 Applications22

4.1 Mécanique des points solides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Mouvement d"un point solide avec forces de frottement:. . . . . . . . . . 22

4.1.2 Orbite d"un satellite :. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Circuits électriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Evolution temporelle des populations. . . . . . . . . . . . . . . . . . . . . . . . . 26

1

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

Une équation différentielle est une équation qui dépend d"une variabletet d"une fonctionx(t)

et qui contient des dérivées dex(t). Elle s"écrit : F t,x(t),x (1)(t),...,x(m)(t)? = 0oùx(m)(t)≡d mx dtm(1)

L"ordre de cette équation est déterminé par sa dérivée d"ordre le plus élevé. Donc l"équation (

1) est d"ordrem. La solution du problème consiste à trouver une fonctionx(t)qui soit solution de ( 1) et dérivable sur un intervalle fini det?[t

0,t0+T]deR. Souvent dans les applications, la variable

treprésente le temps, ett

0est alors l"instant initial. En général, il n"existe une solution unique

à une équation différentielle qu"une fois certaines conditions limites imposées surx(t)et ses

dérivées. Dans l"exemple de l"équation (

1) lesconditions initialessont les valeurs dex(t0),

x (1)(t0),...,x(m-1)(t0).

1 Problème de Cauchy :

La plupart des méthodes numériques pour résoudre les équations différentielles s"appliquent

à des problèmes du typeproblème de Cauchysuivant le nom donné par les mathématiciens. Ce

problème se formule de la manière suivante :

Trouvery(t)définie et dérivable sur[t

0,t0+T]et à valeurs dansRmtelle que :

dy(t) dt=f(t,y(t))?t?[t0,t0+T] y(t

0) =y0

(2) oùf(t,y(t))est une fonction deR m+1dansRmety0?Rm. Concrètement l"expression, "trouver y(t)à valeurs dansR mavecy0?Rm" consiste à dire pour des applications comme Matlab, que l"inconnuey(t)est un vecteur demfonctions inconnues avec pour condition limite le vecteur y 0: y(t) =?????y 1(t) y 2(t) y m(t)????? y

0=y(t0) =?????y

1(t0) y 2(t0) y m(t0)????? =?????y 0,1 y0,2... y 0,m ?(3) De même,f(t,y(t))est une fonction detet du vecteury(t)et doit retourner un vecteur colonne : dy(t) dt≡ddt?????y 1 y2... y m ?=f(t,y(t))≡?????f 1 f2... f m ?(4)

Pour la plupart des problèmes qui intéressent les scientifiques et les ingénieurs, des théo-

rèmes mathématiques assurent l"existence et l"unicité d"une solution au problème de Cauchy.

Néanmoins, souvent la solution ne peut être expriméeanalytiquement. Pour de tels problèmes,

on doit donc chercher à déterminer la fonctiony(t)par des méthodesnumériques. 2

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

2 Transformations vers un problème de Cauchy

Dans Matlab (Octave), de puissant programmes (fonctions) existent sous le nom générique de ODEs (Ordinary Differential Equation Solvers). Ils résolvent les systèmes de la forme de l"équation (

2). Le travail principal d"un utilisateur de Matlab consistedonc le plus souvent à

transformer son problème sous la forme de l"équation (

2). Dans bien des domaines, surtout ceux

des équations à dérivées partielles, les transformations d"un problème donné sous la forme d"un

problème de Cauchy sont toujours d"actualité comme problèmes de recherche.

2.1 Traitement d"une équation différentielle d"ordre>1

Dans ce cours, nous ne regarderons que la transformation d"une équation différentielle d"ordre

supérieur à 1, en problème de Cauchy. Considérons donc une équation différentielle d"ordrem

de la forme suivante : x (m)(t)≡dx (m-1) dt=?? t,x(t),x (1)(t),...,x(m-1)(t)? ?t?[t0,t0+T](5)

Posons de nouvelles fonctionsy

i(t)aveci?[1,2,...,m]définies telles que : y

1(t)≡x(t), y2(t)≡x(1)(t),..., ym(t)≡x(m-1)(t)(6)

Grâce à ces définitions, l"équation (

5) d"ordrems"écrit comme un système deméquations

dy1(t) dt=y(2)(t) dym-1(t) dt=y(m)(t) dym(t) dt=?(t,y1(t),y2(t),...,ym(t))(7) Ce système a donc la forme d"un problème de Cauchy en posant : y(t) =?????y 1(t) y m-1(t) y m(t)????? etf(t,y(t)) =?????y 2(t) y m(t) ?(t,y

1,...,ym)?????

(8)

L"équation (

5) s"écrira alors :

dy(t) dt=f(t,y(t))?t?[t0,t0+T](9) Pour obtenir alors un problème de Cauchy, il faut spécifier les conditions initiales(y

1(t0),y2(t0),

...,y

m(t0))ce qui revient à dire d"après l"équation (6), qu"il faut connaîtrex(t)et ses dérivées

jusqu"à l"ordrem-1au 'temps" initialt

0:?x(t0),x(1)(t0),...,x(m-1)(t0)?. On remarque qu"une

équation différentielle d"ordremd"une seule fonction inconnue,x(t), se traduit par un problème

de Cauchy avecmfonctions inconnues,y i(t), etmconditions initiales. 3

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

2.2 Equations différentielles à coefficients constants

En particulier, les équations différentielles à coefficientsconstants constituent une classe

d"équations de la forme de l"éq.(

5). Notamment quand?est de la forme :

t,x(t),x (1)(t),...,x(m-1)(t)? l"équation l"éq.(

5) peut s"écrire comme une équation différentielle à coefficients constants :

a

1x(t) +a2x(1)(t) +...+amx(m-1)(t) +x(m)(t) =s(t)(11)

où la fonctions(t)est communément appelée un terme source.

Pour des équations de la forme de l"éq.(

11), les substitutions de l"éq.(6) amènent à un système

d"équations de forme matricielle. Par exemple, une équation à coefficients constants d"ordre4

s"écrit : a

1x(t) +a2x(1)(t) +a3x(2)(t) +a4x(3)(t) +x(4)(t) =s(t)(12)

Après les substitutions de l"équation (

6), cette équation s"écrit :

a

1y1(t) +a2y2(t) +a3y3(t) +a4y4(t) +ddty4(t) =s(t)(13)

et l"équation (

9) peut s"écrire sous une forme matricielle :

d dt???? y 1(t) yquotesdbs_dbs47.pdfusesText_47
[PDF] methode de travail

[PDF] méthode de travail cours

[PDF] méthode de travail dans une entreprise

[PDF] méthode de travail efficace

[PDF] methode de travail lycee

[PDF] méthode de travail lycée seconde

[PDF] méthode de travail universitaire

[PDF] methode de wilson gestion de stock exercice

[PDF] méthode des centres d'analyse

[PDF] méthode des coûts complets avantages et inconvénients

[PDF] méthode des couts complets cours

[PDF] méthode des coûts complets exercices corrigés

[PDF] méthode des couts partiels controle de gestion

[PDF] méthode des facteurs rares

[PDF] méthode des perturbations exemple