[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



MONOTONIE DUNE SUITE

De telles suites ne sont pas monotones. Pour être monotone une suite doit étre croissante ou décroissante au moins à partir d'un certain rang. Je donne ici 



Exercice 1 : (4 points) Etudier la monotonie de la suite u. 1) un = n

5) Étudier les variations de la suite (un). Page 2. Première S3. IE5 comportement des suites. S2 2016-2017. 2.



LES SUITES

Variations monotonie d'une suite. Définition 1.1.2. Soit (un) une suite. On dit que : a) la suite (un) est croissante si pour tout n ?. : un ? un+1 ;.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Remarque : Si la raison q est négative alors la suite géométrique n'est pas monotone. RÉSUMÉ. (un) une suite géométrique. - de raison q. - de premier terme u0.



Convergence des suites numériques

Le réel m est alors appelé un minorant de la suite (un). Page 2. 2/12. 14. Convergence des suites numériques.



Chapitre 11 - Monotonie dune suite et limite

strictement décroissante). 2. Vocabulaire : une suite croissante ou décroissante est dite monotone. Traiter les exercices 5559 page 67. Indication : pour 



Chapitre 4: Croissance divergence et convergence des suites - 4.1

De manière analogue on définit une suite strictement croissante



Chapitre 1 Suites réelles et complexes

Une méthode naturelle est de construire une suite (un) dont on sait calculer les termes et qui converge vers ?. Alors par définition de la convergence



Convergence de suites Suites récurrentes

1) Etudier la convergence de la suite de terme général un = Comment montrer qu'une suite récurrente est monotone?



LIMITE DUNE SUITE

Définition (Convergence/divergence) Soit (un)n? une suite réelle. On dit que (un)n? est convergente ou qu'elle converge si elle possède une limite FINIE. On 

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1quotesdbs_dbs47.pdfusesText_47
[PDF] monotonie d'une suite exercice

[PDF] monotonie d'une suite exercice corrigé

[PDF] monotonie d'une suite géométrique

[PDF] monoxyde de carbone

[PDF] monoxyde de carbone c'est quoi

[PDF] monoxyde de carbone cause

[PDF] monoxyde de carbone chaudiere

[PDF] monoxyde de carbone danger

[PDF] monoxyde de carbone dans le sang

[PDF] Monoxyde De Carbone Fiche D'identité

[PDF] monoxyde de carbone intoxication

[PDF] monoxyde de carbone lewis

[PDF] monoxyde de carbone ppm

[PDF] monroe

[PDF] Monsieur Badin