[PDF] cours-exo7.pdf Dérivées. Trigonométrie.





Previous PDF Next PDF



1 Applications linéaires Morphismes

https://www.math.univ-toulouse.fr/~hallouin/Documents/Cours_ApplicationsLineaires.pdf



Intégrales de fonctions de plusieurs variables

Calculer la dérivée d'une fonction est toujours possible et relativement facile on connait une primitive de f



Math206 – Equations aux Dérivées Partielles Feuille dExercices 1

On note f la fonction de R2 dans R définie par : f(u v) = g. (u + v. 2.



Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et

Exercice 4 : Soient E un espace vectoriel de dimension finie et (u v) ? L(E). montrer que. Ker(f) ? Ker(g) ? ?h ? L(E)



DERIVEES I) Calcul de la fonction dérivée II) Application de la

la fonction carré de u u² est dérivable sur I ; uu u. ?×. =?. 2)(. 2 si de plus v ne s annule pas sur I



Dérivabilité - Théorèmes de Rolle théorème des accroissements

26 févr. 2015 trois points distincts de I. Montrer qu'il existe d ? I tel que ... Il nous faut une fonction telle que la dérivée fera apparaître f(x) ...



Fonctions de plusieurs variables

1 nov. 2004 Pour une fonction d'une variable f définie au voisinage de 0



Dérivation

La fonction qu'on dérive n'est pas forcément partout définie d'o`u La dérivation qu'on vient d'évoquer concerne les fonctions. On ne.



Sur léquation fonctionnelle vectorielle f[x(u)y(v)

http://www.numdam.org/article/ASENS_1964_3_81_2_107_0.pdf



cours-exo7.pdf

Dérivées. Trigonométrie. Fonctions usuelles. Développements limités Le raisonnement par l'absurde pour montrer « P =? Q » repose sur le principe ...

Cours de mathématiques

Première annéeExo7

2

SommaireExo7

1Logique et raisonnements. ........................................9

1

L ogique

9 2

R aisonnements

14

2Ensembles et applications. ......................................19

1

Ensembles

20 2

Applications

23
3

Injection, surjection, bijection

25
4

Ensembles finis

29
5

R elationd"équivalence

36

3Nombres complexes. ............................................41

1

L esnombres comple xes

41
2 R acinescar rées,équation du second degr é 45
3

Ar gumentet trigonométrie

48
4

Nombres comple xeset géométrie

52

4Arithmétique. ...................................................55

1

Division euclidienne et pgcd

55
2

Théor èmede Bézout

59
3

Nombres premiers

63
4

Congruences

66

5Polynômes. ......................................................73

1

Définitions

73
2

Arithmétique des polynômes

76
3

R acined"un polynôme, factorisation

80
4

F ractionsrationnelles

85

6Groupes. ........................................................89

1

Gr oupe

89
2

Sous-gr oupes

94
3

Morphismes de gr oupes

96
4

L egr oupeZ/nZ.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5

L egr oupedes per mutationsSn.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7Les nombres réels. .............................................107

1

L "ensembledes nombres rationnels Q.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2

P ropriétésde R.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3

Densité de QdansR.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4

Bor nesupérieure

116 3

4SOMMAIRE

8Les suites. ......................................................121

1

Définitions

121
2

Limites

124
3

Ex emplesremar quables

130
4

Théor èmede conver gence

135
5

Suites r écurrentes

140

9Limites et fonctions continues. .................................147

1

Notions de fonction

148
2

Limites

152
3

Continuité en un point

158
4

Continuité sur un inter valle

163
5

F onctionsmonotones et bijections

166

10Fonctions usuelles. .............................................173

1

L ogarithmeet e xponentielle

173
2

F onctionscirculaires inverses

177
3

F onctionshyperboliques et hyperboliques inverses

180

11Dérivée d"une fonction. .........................................185

1

Dérivée

186
2

Calcul des dérivées

189
3

Extremum local, théor èmede R olle

193
4

Théor èmedes accr oissementsfinis

197

12Zéros des fonctions. ............................................203

1

La dichotomie

203
2

La méthode de la sécante

208
3

La méthode de Newton

212

13Intégrales. .....................................................217

1

L "intégralede Riemann

219
2

P ropriétésde l"intégrale

225
3

P rimitived"une fonction

228
4 Intégration par par ties- Changement de variable 234
5

Intégration des fractions rationnelles

238

14Développements limités. .......................................243

1

F ormulesde T aylor

244
2 Développements limités au voisinage d"un point 250
3 Opérations sur les développements limités 253
4

Applications des développements limités

257

15Courbes paramétrées. ..........................................263

1

Notions de base

264
2

T angenteà une courbe paramétr ée

271
3

P ointssinguliers - Branches infinies

277
4

Plan d"étude d"une courbe paramétr ée

284
5

Courbes en polaires : théorie

291
6

Courbes en polaires : e xemples

298

SOMMAIRE5

16Systèmes linéaires. .............................................303

1 Intr oductionaux systèmes d"équations linéaires 303
2

Théorie des systèmes linéaires

307
3

R ésolutionpar la méthode du pivot de Gauss

310

17L"espace vectorielRn............................................317

1

V ecteursde Rn.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

2

Ex emplesd"applications linéaires

320
3

P ropriétésdes applications linéaires

326

18Matrices. .......................................................333

1

Définition

333
2

Multiplication de matrices

336
3

Inverse d"une matrice : définition

341
4

Inverse d"une matrice : calcul

343
5 Inverse d"une matrice : systèmes linéaires et matrices élémentaires 346
6 Matrices triangulaires, transposition, trace, matrices symétriques 353

19Espaces vectoriels. .............................................361

1

Espace vectoriel (début)

361
2

Espace vectoriel (fin)

365
3

Sous-espace vectoriel (début)

369
4

Sous-espace vectoriel (milieu)

373
5

Sous-espace vectoriel (fin)

376
6

Application linéaire (début)

383
7

Application linéaire (milieu)

385
8

Application linéaire (fin)

388

20Dimension finie. ................................................395

1

F amillelibre

395
2

F amillegénératrice

400
3 Base 402
4

Dimension d"un espace vectoriel

408
5

Dimension des sous-espaces vectoriels

413

21Matrices et applications linéaires. ...............................419

1

R angd"une famille de vecteurs

419
2

Applications linéaires en dimension finie

425
3

Matrice d"une application linéaire

432
4

Changement de bases

438

22Déterminants. ..................................................447

1

Déter minanten dimension 2et3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

2

Définition du déter minant

451
quotesdbs_dbs47.pdfusesText_47
[PDF] Montrer

[PDF] Montrer : la peur, l'énervement, la joie, & la tristesse dans un dialogue

[PDF] montrer allemand

[PDF] montrer anglais

[PDF] Montrer comment l'organisme apporte plus de dioxygène aux muscles lors d'un effort

[PDF] montrer comment le poete exprime son opinion dans un poeme

[PDF] montrer convergence suite

[PDF] Montrer d'après une figure et variations de fonction

[PDF] montrer définition

[PDF] montrer espagnol

[PDF] Montrer l'importance de l'adaptation d'impedence

[PDF] montrer l'exemple en anglais

[PDF] montrer l'exemple n'est pas la meilleure façon de convaincre c'est la seule

[PDF] montrer l'exemple synonyme

[PDF] Montrer la nature d un triangle et calculer une valeur