[PDF] Première S - Application du produit scalaire : Géométrie analytique





Previous PDF Next PDF



COMMENT DEMONTRER……………………

Pour démontrer qu'un point appartient à la médiatrice d'un segment. On sait que MA = MB. Propriété :Si un point est équidistant des extrémités d'un segment.



Démontrer quun point est le milieu dun segment Démontrer que

A et B appartiennent au cercle de centre O donc. OA = OB. P 42 Si un point appartient à la médiatrice d'un segment alors il est équidistant des extrémités de 



ELEMENTS DE COURS

A étant un point du cercle C et de la droite (d) pour démontrer que (d) Si un point appartient à la médiatrice d'un segment alors il est équidistant des.



DÉMONTRER QUUN POINT EST LE MILIEU DUN SEGMENT

DÉMONTRER QU'UN POINT EST LE MILIEU D'UN SEGMENT. EXERCICES TYPE Montrer que les points A O ... segment



TRIANGLES RECTANGLES ET CERCLES

Son centre est toujours le point de concours des médiatrices des 3 côtés de ce triangle. 3 propriétés pour démontrer qu'un triangle est rectangle:.



Première S - Application du produit scalaire : Géométrie analytique

Dire qu'un point M appartient à la droite (d) passant par le point A et de Une équation cartésienne de la médiatrice (d1) du segment [BC] est donc :.



F1 Comment démontrer que deux droites sont parallèles

Comment démontrer qu'un point est le milieu d'un segment point est équidistant des extrémités d'un segment alors ce point appartient à la médiatrice de.



GEOMETRIE EN 3ème Démontrer quun point est le milieu dun

Démontrer que deux segments ont la même longueur. Propriété (6°). Si un point appartient à la médiatrice d'un segment alors il.



Symétrie par rapport à une droite Symétrie par rapport à un point

Dire qu'un point est un centre de symétrie d'une figure signifie que la figure il appartient à la médiatrice du segment d'extrémités ces deux points.



DÉMONTRER QUUN TRIANGLE EST RECTANGLE EXERCICES

DÉMONTRER QU'UN TRIANGLE EST RECTANGLE Le point H appartient au cercle de diamètre [SR]. ... La médiatrice de [FG] coupe [FG] en J et [EG] en K.

Application du produit scalaire:

Géométrie analytique

I) Vecteur normal et équation de droite

1) Vecteur normal à une droite

Dire que ࢔,,& est un vecteur non nul normal à une droite (d) de vecteur directeur ࢛,,& signifie que ࢔,,& est orthogonal à ࢛,,& . Conséquence : Caractérisation d'une droite par un point donné et un vecteur normal Dire qu'un point M appartient à la droite (d) passant par le point A et de vecteur normal ࢔ & si et seulement si ࡭ࡹ et ࢔,,& sont orthogonaux, c'est-à-dire : si et seulement si La droite (d) est l'ensemble des points M tels que

2) Vecteur normal d'une droite d'équation ࢇ࢞ ൅ ࢈࢟ ൅ ࢉ ൌ ૙

a) Propriétés : • Une droite (d) de vecteur normal ࢔,,& (a ; b) a une équation cartésienne de la forme ࢇ࢞ ൅ ࢈࢟ ൅ ࢉ ൌ ૙ où c est un nombre réel.

• La droite (d) d'équation cartésienne ࢇ࢞ ൅ ࢈࢟ ൅ ࢉ ൌ ૙ avec

(a ; b) ് (0 ; 0) a pour vecteur normal ࢔,,& (a ; b) b) Démonstration :

A(ݔ

appartient à (d) si et seulement si ܯܣ si et seulement si ܽ ) = 0 qui est équivalent à : = 0 qui est équivalent à : ܽݔ + ܾݕ ൅ ܿ= 0 avec ܿ= െܽ & (-b ; a). & le vecteur de coordonnées (a ; b). & est un vecteur normal à (d). c) Exemples: ȳ (3 ; 4 ) passant par les points A(4 ; 8) B(2 ; 0 ) et C(-1 ; 5 ) Déterminer une équation cartésienne des droites suivantes : a) La médiatrice du segment [BC] b) La hauteur du triangle ABC issue de B c) La tangente en A au cercle C

Réponse :

a) La médiatrice du segment [BC] est la droite (d 1 ) passant par le milieu I du segment [BC] et perpendiculaire à (BC), donc la droite (d 1 ) passe par le point I et a pour vecteur

Une équation cartésienne de la droite (d

1 ) est donc de la forme : -3ݔ + 5ݕ + c = 0

I le milieu de [BC] a pour coordonnées : I (

I appartient à la droite, ses coordonnées vérifient l'équation de (d 1 -3ൈ ଵ + 5ൈ ହ

On obtient : c = െʹʹ

= -11 Une équation cartésienne de la médiatrice (d 1 ) du segment [BC] est donc : -3࢞ + 5࢟ - 11 = 0 b) La hauteur issue de B est la droite (d 2 ) passant par le point B, perpendiculaire au côté [AC], donc la droite (d 2) passe par le point B et a pour vecteur normal ܥܣ @Fw FuA

Une équation cartésienne de la droite (d

2 ) est donc de la forme : -5ݔ - 3ݕ + c = 0 B (2 ; 0) appartient à la droite, ses coordonnées vérifient l'équation de (d 2 -5ൈ 2 - 3ൈ 0 + c = 0

On obtient : c = 10

Une équation cartésienne de la hauteur (d

2 ) issue de B est donc : -5࢞ - 3࢟ + 10 = 0 c) La tangente (d 3 ) en A au cercle (C ) de centre ȳ est la droite passant par A perpendiculaire au rayon [ȳ A]. (d 3 ) est donc la droite passant par le point A de vecteur normalܣߗ

Une équation cartésienne de la droite (d

3 ) est donc de la forme :

ݔ + 4ݕ + c = 0

A (4 ; 8) appartient à la droite, ses coordonnées vérifient l'équation de (d 3

4 + 4ൈ 8 + c = 0

On obtient : c = -36

Une équation cartésienne de la tangente (d

3 ) en A au cercle (C ) est donc : ࢞ + 4࢟ - 36 = 0

II) Equation cartésienne d'un cercle:

1) Cercle défini par son centre et son rayon

a) Propriétés:

C est le cercle de centre ષ (࢞

) et de rayon R.

Une équation cartésienne de

)² = R² b) Démonstration : Un point M(ݔ ; ݕ) appartient au cercle C de centre ȳ (ݔ ) et de rayon R si et seulement si ȳ; = R² ce qui est équivalent à : )² = R² c) Exemple : Le cercle de centre ȳ (3 ; 5) et de rayon 8 cm a pour équation :

2) Cercle défini par un diamètre

a) Propriété: Le cercle C de diamètre [AB] est l'ensemble des points M tels que : b) Démonstration: Le point M appartient au cercle C de diamètre [AB] si et seulement si le triangle AMB est rectangle en M, c'est-à-dire si et seulement si les vecteurs ܯܣ sont orthogonaux ce qui est équivalent à dire que ܯܣ Lr, On obtient donc une équation de ce cercle en écrivant Lr, c) Exemple : Donner l'équation du cercle C de diamètre [AB] où A(3 ; -2) et B(-3 ; 4) M(ݔ ; ݕ) appartient au cercle C si et seulement si ܯܣ Lr, :TEuquotesdbs_dbs47.pdfusesText_47
[PDF] Montrer qu'un triangle est rectangle

[PDF] Montrer qu'un triangle est rectangle ( 3eme )

[PDF] Montrer qu'une fonction est affine

[PDF] montrer qu'une suite est géométrique

[PDF] Montrer qu'une surface latérale est égale ? celle d'une sphère

[PDF] montrer qu'un ensemble est fini

[PDF] montrer qu'un ensemble est infini

[PDF] montrer qu'un parallélogramme est un losange

[PDF] montrer qu'un point appartient ? une droite représentation paramétrique

[PDF] montrer qu'un point appartient a une droite dans l'espace

[PDF] montrer qu'un quadrilatère est un parallélogramme

[PDF] montrer qu'un triangle est rectangle avec les nombres complexes

[PDF] montrer qu'un triangle est rectangle repère orthonormé

[PDF] montrer qu'une courbe admet un centre de symétrie

[PDF] montrer qu'une courbe admet une asymptote oblique