[PDF] Géométrie dans lespace Bac S 2019





Previous PDF Next PDF



Rappels : Triangle rectangle

J'utilise le théorème de Pythagore démontrer qu'un triangle n'est pas rectangle. Pour s'entraîner exercice 5B . Ce triangle est-il rectangle ?



Séquence : Démontrer quun triangle est rectangle ou non. A

{ é. Le triangle ABC est rectangle en A. Remarque : La réciproque du théorème de Pythagore permet de montrer qu'un triangle est rectangle. Application et 



Outils de démonstration

Si un triangle isocèle a un angle qui mesure 60° alors c'est un triangle équilatéral. Sommaire. Page 5. Comment démontrer qu'un triangle est rectangle ?



EXERCICE NO 53 : Démontrer quun triangle est rectangle

Démontrer que le triangle EAC est rectangle. EXERCICE NO 53 : Géométrie plane— Théorème de Pythagore. CORRECTION. Démontrer qu'un triangle est rectangle.



TRIANGLES RECTANGLES ET CERCLES

3 propriétés pour démontrer qu'un triangle est rectangle: PR1. Propriété réciproque relative cercle circonscrit à un triangle rectangle. Si un triangle est 



DÉMONTRER QUUN TRIANGLE EST RECTANGLE EXERCICES

DÉMONTRER QU'UN TRIANGLE EST RECTANGLE. EXERCICES TYPE. 1 Trace le cercle de diamètre [SR] tel que. SR = 7 cm puis place sur ce cercle un point H tel.



Démontrer quun triangle est rectangle isocèle Evidemment dit

Le triangle ABC est donc rectangle en B . On démontre ensuite facilement qu'il est isocèle avec le calcul de ou celui de BC avec. Pythagore.



COMMENT DEMONTRER……………………

Pour démontrer qu'un triangle est rectangle(ne pas oublier de préciser le sommet de l'angle droit). On sait que (AB) ? (AC) dans le triangle ABC.



Géométrie dans lespace Bac S 2019

Comme le triangle ABC est rectangle en A: les droites Pour répondre à cette question nous devons montrer que les triangles ABC



Théorème de Thalès (révisions Pythagore)

Dans un triangle rectangle l'hypoténuse au carré est égale à la somme des A démontrer que deux droites sont perpendiculaire ou qu'un triangle est.

Exercice 4Corrigé

LES MATHÉMATIQUES

AU BACCALAURÉAT S

GÉOMÉTRIE DANS L'ESPACE, BAC S

Droites et Plans

Triangle rectangle, Théorème de Pythagore

Triangle isocèle

Tétraèdre

Distance entre deux points

Vecteurs colinéaires ou coplanaires

Droites sécantes

Produit scalaire et Norme d'un vecteur

Vecteurs orthogonaux

Représentation paramétrique d'une droite

Equation cartésienne d'un plan

Théorème du Toit

1 freemaths fr, 2019Corrigé - Bac - Mathématiques - 2019

Freemaths

Tous droits réservés

1.

Montrons que la droite (

AC ) est orthogonale au plan ( BAD ):

Nous avons:

d est orthogonale à P donc elle est orthogonale à toute droite de ce plan et en particulier à ( AC ) . Donc ( BD ) est

orthogonale à ( AC Comme le triangle ABC est rectangle en A: les droites AB ) et ( AC ) sont perpendiculaires AC ) est donc orthogonale aux deux droites sécantes ( BD ) et ( AB ) du plan ( BAD ) . Ainsi: la droite ( AC ) est bien orthogonale au plan ( BAD ) . 2. Montrons que le tétraèdre ABCD est un bicoin:

D'après l'énoncé:

" un bicoin est un tétraèdre dont les quatre faces sont des triangles rectangles " . Pour répondre à cette question, nous devons montrer que les triang les ABC,

ACD, DBA et DBC sont des triangles rectangles .

Or: ABC est rectangle en A, d'après l'énoncé .

Comme la droite (

AC ) est orthogonale au plan (BAD), le triangle ACD est rectangle en A .

EXERCICE 4

Partie A:

[ Amérique du Nord 2019 ] 2 freemaths fr, 2019Corrigé - Bac - Mathématiques - 2019

Freemaths

Tous droits réservés

d est perpendiculaire à P, donc les triangles DBA et DBC sont rectangles en B Ainsi, comme les quatre faces du tétraèdre sont des triangles rect angles: le tétraèdre ABCD est un bicoin 3. a. Justifions que l'arête [ CD ] est la plus longue du bicoin ABCD: En ayant recours aux propriétés des triangles rectangles: ABC est rectangle en A, donc: BC > AB et BC > AC ; ACD est rectangle en A, donc: CD > AC et CD > AD ; DBA est rectangle en B, donc: DA > DB et DA > BA ; DBC est rectangle en B, donc: DC > DB et DC > BC .

Ainsi, nous avons:

DC > BC > AB

DC > BC > AC

CD > AD > DB .

Au total: oui, l'arête [ CD ] est la plus longue du bicoin ABCD . 3. b. Montrons que le point est équidistant des 4 sommets du bicoin ABCD: est le milieu de l'arête [ CD ] . est donc le milieu de l'hypoténuse [ CD ] du triangle ACD rectangl e en A . correspond ainsi au centre du cercle circonscrit à ce triangle

Nous pouvons donc écrire:

A = C = D .

De plus, est aussi le milieu de l'hypoténuse [ CD ] du triangle DBC rectang le en B . correspond ainsi au centre du cercle circonscrit à ce triangle . 3 freemaths fr, 2019Corrigé - Bac - Mathématiques - 2019

Freemaths

Tous droits réservés

Et, nous pouvons écrire:

D = B = C .

Au total, nous avons donc: A = C = D = B .

Donc oui, le point est bien équidistant des 4 sommets du bicoin ABCD .

Partie B:

1. Déterminons une équation cartésienne du plan P orthogonal à la droite d passant par le point A: Ici: n( a = 2 b = - 2 c = 1 ) est un vecteur directeur de la droite d ;

A ( 3 ; 1 ; - 5 ) est un point de l'espace .

D'où une équation cartésienne du plan passant par A et de ve cteur normal n est: a ( - A ) + b ( y - y A ) + c ( z - z A ) = 0 <=> 2 ( - 3 ) + ( - 2 ) ( y - 1 ) + 1 ( z - ( - 5 ) ) = 0 <=> 2 - 2 y + z + 1 = 0 . En conclusion, une équation cartésienne du plan P est: 2 - 2 y + z + 1 = 0 . 2. Montrons que le point B ( 5 ; 5 ; - 1 ) est le point d'intersection du plan P et de la droite d: Soit: " B le point d'intersection du plan P et de la droite d. " Une représentation paramétrique de la droite d est: x = 2 t + 1 z = t - 3 4 freemaths fr, 2019Corrigé - Bac - Mathématiques - 2019

Freemaths

Tous droits réservés

Soit B (

B ; y B ; z B ) , un point appartenant à la droite d . B appartient aussi au plan P ssi ses coordonnées vérifient:

2 - 2 y + z + 1 = 0 .

D'où:

2 x B - 2 y B + z B + 1 = 0 <=> 2 ( 2 t + 1 ) - 2 ( - 2 t + 9 ) + ( t - 3 ) + 1 = 0 cad: t = 18 9 = 2 Dans ces conditions, les coordonnées du point B sont: x B = 2 x 2 + 1 = 5 y B

2 x 2 + 9 = 5

z B = 2 - 3 = 1 Au total, les coordonnées du point B sont bien: ( 5 ; 5 ; - 1 ) . 3. a. Montrons que le point C ( 7 ; 3 ; - 9 ) appartient au plan P:

Le point C (

7 ; 3 ; - 9 ) appartient au plan P ssi ses coordonnées vérifient

l'équation:

2 - 2 y + z + 1 = 0 .

Or:

2 x ( 7 ) - 2 x ( 3 ) + 1 x ( - 9 ) + 1 = 14 - 6 - 9 + 1

= 0 .

Ainsi: le point C appartient bien au plan P .

3. b. Montrons que le triangle ABC est rectangle isocèle en A: Le triangle ABC est rectangle isocèle en A ssi deux choses: il est rectangle en A: BC 2 = AB 2 + AC 2 5 freemaths fr, 2019Corrigé - Bac - Mathématiques - 2019

Freemaths

Tous droits réservés

ses deux côtés AB et AC sont de même longueur: AB = AC .

Or ici:

AB = ( 5 - 3 )

2

5 - 1 )

2 1 - ( 5 2 = 6, AC = 7 - 3 2

3 - 1 )

2 9 - ( 5 2 = 6, BC = 7 - 5 2

3 - 5 )

2 9 - ( 1 2 = 72. Donc:

AB = AC = 6

BC 2 = AB 2 + AC 2 car: ( 72 ) 2 = 6 2 + 6 2

Ainsi:

le triangle ABC est bien rectangle isocèle en A . 4. a. Justifions que le triangle ABM est rectangle:

Les points M et B appartiennent à la droite d.

Cette dernière est orthogonale au plan P et par conséquent à to utes les droites de ce plan

Donc la droite (

MB ) est orthogonale à la droite ( AB ) ( qui appartient à P ) .

Ainsi:

le triangle ABM est bien rectangle en B . 4. b. Montrons que le triangle ABM est isocèle en B ssi t 2 - 4 t = 0: Le triangle ABM est rectangle isocèle en B ssi deux choses: il est rectangle en B: AM 2 = AB 2 + BM 2 ses deux côtés AB et BM sont de même longueur: AB = BM .

Or ici:

le triangle ABM est rectangle en B, d'après question précéde nte,

AB = 6,

6 freemaths fr, 2019Corrigé - Bac - Mathématiques - 2019

Freemaths

Tous droits réservés

BM =

2 t + 1 ) - 5 ]

2 - 2 t + 9 ) - 5 ] 2 t - 3 ) + 1 ] 2 = ( 2 t - 4 ) 2 2 t + 4 2 t - 2 ) 2 = 9 ( t - 2 ) 2 = 3 ( t - 2 ) . ( avec: t 2, d'après l'énoncé ) Donc, le triangle rectangle ABM est isocèle en B ssi:

AB = BM

<=> 6 = 3 ( t - 2 ) <=> 2 = t - 2 <=> t - 4 = 0 ou: t 2 - 4 t = 0 .

Au total:

le triangle ABM est bien isocèle en B ssi t 2 - 4 t = 0 . 4. c. Déduisons-en les coordonnées des points M 1 et M 2 Nous savons que le triangle ABM est isocèle en B ssi: t 2 - 4 t = 0 . Or: t 2 - 4 t = 0 <=> t ( t - 4 ) = 0 <=> t = 0 ou t = 4 . Dans ces conditions, nous avons deux points " M ": M 1 et M 2

En effet:

Quand t = 0: M

1 (1 ; 9 3

Quand t = 4: M

2 (9 ; 1 ; 1

En conclusion, les coordonnées des points M

1 et M 2 de la droite d tels que les triangles rectangles ABM 1 et ABM 2 soient isocèles en B sont: M 1 (1 ; 9 3 ) et M 2 (9 ; 1 ; 1quotesdbs_dbs47.pdfusesText_47
[PDF] Montrer qu'un triangle est rectangle ( 3eme )

[PDF] Montrer qu'une fonction est affine

[PDF] montrer qu'une suite est géométrique

[PDF] Montrer qu'une surface latérale est égale ? celle d'une sphère

[PDF] montrer qu'un ensemble est fini

[PDF] montrer qu'un ensemble est infini

[PDF] montrer qu'un parallélogramme est un losange

[PDF] montrer qu'un point appartient ? une droite représentation paramétrique

[PDF] montrer qu'un point appartient a une droite dans l'espace

[PDF] montrer qu'un quadrilatère est un parallélogramme

[PDF] montrer qu'un triangle est rectangle avec les nombres complexes

[PDF] montrer qu'un triangle est rectangle repère orthonormé

[PDF] montrer qu'une courbe admet un centre de symétrie

[PDF] montrer qu'une courbe admet une asymptote oblique

[PDF] montrer qu'une equation admet une solution unique