[PDF] Suites 1 Convergence Exercice 14. Soit n ⩾ 1.





Previous PDF Next PDF



Théorème de la bijection : exemples de rédaction

« Montrer qu'il existe un unique α ∈ tel que . . . » « Montrer que l'équation f(x) = ... admet une unique solution dans . . .



DM 7 correction Exercice 1 : ( ) ( ) ( ) 1°) Montrer que cette équation

Donc cette équation admet et comme racine. Seul est solution de donc il existe une unique solution réelle . 2°) On factorise (. ) (. ) (. ) par . Il existe 



Corrigé du TD no 11

Montrer que l'équation x2(cos x)5 + x sin x +1=0 admet au moins une solution réelle. Réponse : La fonction f : x ↦→ x2(cos x)5 + x sin x + 1 est continue sur 



Suites implicites

(. ) On considère les fonctions fn : x ↦→ xn + x − 1 pour n ∈ N∗. a. Soit n ∈ N∗. Démontrer que l'équation fn(x) = 0 admet une unique solution xn ∈ ]01 



Exo7 - Exercices de mathématiques

Solution maximale. 831. 277 381.00 Théorème de Cauchy-Lipschitz. 832. 278 382.00 ... Démontrer que (1 = 2) ⇒ (2 = 3). Correction Τ. [000105]. Exercice 3. Soient ...



comment utiliser le TVI ou ses corollaires

❖ Le corollaire (ou extensions) du TVI s'utilise dans le cas ou on demande de montrer qu'une équation du type f(x)=k admet une unique solution. ❖ Lorsqu'on 



Équations différentielles

Finalement (E2) admet sur R une unique solution



Nombres complexes. Équations du 2ième degré à coefficients réels

Exercice. 1. Résoudre dans C: z2. −16 z+89=0. 2. Montrer que l'équation : z3. −(16−i)z2. +(89−16 i)z+89 i=0 admet une solution imaginaire pur que l'on.



Exercice 1 a) Montrer que la fonction Arctan est 1-lipschitzienne sur

On consid`ere l'équation différentielle y = (1 + cos t)y − y2 avec la condition initiale y(0) = y0. a) Montrer que ce probl`eme admet une unique solution 



Correction : 65 p. 132 Correction : 68 p. 132

(- 1) appartient à ] lim ? ( ) ; f(0)]. D'après le théorème des valeurs intermédiaires on conclut que l'équation f(x) = - 1 admet une unique solution 



Terminale S - Continuité dune fonction Théorème des valeurs

Autrement dit l'équation ( ) = admet au moins une solution Pour démontrer que l'équation ( ) = a une unique solution sur l'intervalle [  ...



Théorème de la bijection : exemples de rédaction

Montrer que l'équation f(x) = admet une unique solution dans . . . » • La rédaction correcte d'une telle question demande de la rigueur. Une.



comment utiliser le TVI ou ses corollaires

Le corollaire (ou extensions) du TVI s'utilise dans le cas ou on demande de montrer qu'une équation du type f(x)=k admet une unique solution.



DM 7 correction Exercice 1 : ( ) ( ) ( ) 1°) Montrer que cette équation

Donc cette équation admet et comme racine. Seul est solution de donc il existe une unique solution réelle . 2°) On factorise (. ).



fonction et continuite

Ce théorème peut permettre de démontrer qu'une équation admet une unique solution dans un in- tervalle donné dès lors que la fonction est strictement 



Corrigé du TD no 11

Montrer que l'équation x5 = x2 + 2 a au moins une solution sur ]0 2[. bijection



Correction du contrôle continu 1

Montrer que l'équation (E) admet une unique solution maximale ? : I :=]T?T+[? R de classe C1 avec T? < 0 < T+. On considère la fonction f : R × R ? R 



Suites 1 Convergence

Montrer que l'équation n. ? k=1 xk = 1 admet une unique solution notée an



Suites implicites

Montrer que l'équation f(x) = n a une unique solution dans R+?. On la note un. Soit n ? N. Comme n ? ]??+?[

Exo7

Suites

1 Convergence

Exercice 1Montrer que toute suite convergente est bornée. Montrer qu"une suite d"entiers qui converge est constante à partir d"un certain rang.

Montrer que la suite(un)n2Ndéfinie par

u n= (1)n+1n n"est pas convergente. Soit(un)n2Nune suite deR. Que pensez-vous des propositions suivantes : Si(un)nconverge vers un réel`alors(u2n)net(u2n+1)nconvergent vers`. Si(u2n)net(u2n+1)nsont convergentes, il en est de même de(un)n. Si(u2n)net(u2n+1)nsont convergentes, de même limite`, il en est de même de(un)n. Soitqun entier au moins égal à 2. Pour toutn2N, on poseun=cos2npq 1.

Montrer que un+q=unpour toutn2N.

2. Calculer unqetunq+1. En déduire que la suite(un)n"a pas de limite.

SoitHn=1+12

++1n 1. En utilisant une intégrale, montrer que pour tout n>0 :1n+16ln(n+1)ln(n)61n 2.

En déduire que ln (n+1)6Hn6ln(n)+1.

3.

Déterminer la limite de Hn.

4. Montrer que un=Hnln(n)est décroissante et positive. 1

5.Conclusion ?

On considère la fonctionf:R!Rdéfinie par

f(x) =x39 +2x3 +19 et on définit la suite(xn)n>0en posantx0=0 etxn+1=f(xn)pourn2N: 1. Montrer que l"équation x33x+1=0 possède une solution uniquea2]0;1=2[: 2.

Montrer que l"équation f(x) =xest équivalente à l"équationx33x+1=0 et en déduire queaest

l"unique solution de l"équationf(x) =xdans l"intervalle[0;1=2]: 3. Montrer que la fonction fest croissante surR+et quef(R+)R+. En déduire que la suite(xn)est croissante. 4. Montrer que f(1=2)<1=2 et en déduire que 06xn<1=2 pour toutn>0: 5.

Montrer que la suite (xn)n>0converge versa:

Exercice 8Posonsu2=112

2et pour tout entiern>3,

u n= 112
2 113
2 11n 2

Calculerun. En déduire que l"on a limun=12

Déterminer les limites lorsquentend vers l"infini des suites ci-dessous ; pour chacune, essayer de préciser en

quelques mots la méthode employée. 1.

1 ; 12

;13 ;:::;(1)n1n 2.

2 =1 ; 4=3 ; 6=5 ;:::; 2n=(2n1);:::

3.

0 ;23 ; 0;233 ;:::; 0;2333 ;:::

4. 1n 2+2n

2++n1n

2 5. (n+1)(n+2)(n+3)n 3 6.

1+3+5++(2n1)n+12n+12

7. n+(1)nn(1)n 2 8.

2n+1+3n+12

n+3n 9.

1=2+1=4+1=8++1=2npuisp2 ;

q2 p2 ; r2 q2 p2 ;::: 10. 113
+19 127
++(1)n3 n 11. pn+1pn 12. nsin(n!)n 2+1 13.

Démontrer la formule 1 +22+32++n2=16

n(n+1)(2n+1); en déduire limn!¥1+22+32++n2n 3.

On considère les deux suites :

u n=1+12! +13! ++1n!;n2N; v n=un+1n!;n2N:

Montrer que(un)net(vn)nconvergent vers une même limite. Et montrer que cette limite est un élément de

RnQ. Soita>0. On définit la suite(un)n>0paru0un réel vérifiantu0>0 et par la relation u n+1=12 u n+au n

On se propose de montrer que(un)tend verspa.

1.

Montrer que

u n+12a=(un2a)24un2: 2. Montrer que si n>1 alorsun>papuis que la suite(un)n>1est décroissante. 3.

En déduire que la suite (un)converge verspa.

4. En utilisant la relation un+12a= (un+1pa)(un+1+pa)donner une majoration deun+1paen fonction deunpa. 5.

Si u1pa6ket pourn>1 montrer que

u npa62pa k2 pa 2n1 6.

Application : Calculer

p10 avec une précision de 8 chiffres après la virgule, en prenantu0=3.

Soientaetbdeux réels,a récurrente(un)ndéfinie par : u

02[a;b]et pour toutn2N;un+1=f(un):

3

1.On suppose ici que fest croissante. Montrer que(un)nest monotone et en déduire sa convergence vers

une solution de l"équationf(x) =x.

2.Application.Calculer la limite de la suite définie par :

u

0=4 et pour toutn2N;un+1=4un+5u

n+3: 3. On suppose maintenant que fest décroissante. Montrer que les suites(u2n)net(u2n+1)nsont monotones et convergentes.

4.Application.Soit

u 0=12 et pour toutn2N;un+1= (1un)2:

Calculer les limites des suites(u2n)net(u2n+1)n.

1.

Soient a;b>0. Montrer quepab6a+b2

2.

Montrer les inég alitéssui vantes( b>a>0) :

a6a+b2

6beta6pab6b:

3.

Soient u0etv0des réels strictement positifs avecu0 suivante : u n+1=pu nvnetvn+1=un+vn2 (a)

Montrer que un6vnquel que soitn2N.

(b)

Montrer que (vn)est une suite décroissante.

(c) Montrer que (un)est croissante En déduire que les suites(un)et(vn)sont convergentes et quelles ont même limite.

Soitn>1.

1.

Montrer que l"équation

nå k=1xk=1 admet une unique solution, notéean, dans[0;1]. 2. Montrer que (an)n2Nest décroissante minorée par12 3.

Montrer que (an)converge vers12

Indication pourl"exer cice1 NÉcrire la définition de la convergence d"une suite(un)avec les "e". Comme on a une proposition qui est vraie

pour toute>0, c"est en particulier vrai poure=1. Cela nous donne un "N". Ensuite séparez la suite en deux

: regardez lesnN(pour lequel on utilise notree=1).Indication pourl"exer cice2 NÉcrire la convergence de la suite et fixere=12

. Une suite eststationnairesi, à partir d"un certain rang, elle est

constante.Indication pourl"exer cice3 NOn prendra garde à ne pas parler de limite d"une suite sans savoir au préalable qu"elle converge !

Vous pouvez utiliser le résultat du cours suivant : Soit(un)une suite convergeant vers la limite`alors toute

sous-suite(vn)de(un)a pour limite`.Indication pourl"exer cice4 NDans l"ordre c"est vrai, faux et vrai. Lorsque c"est faux chercher un contre-exemple, lorsque c"est vrai il faut le

prouver.Indication pourl"exer cice5 NPour la deuxième question, raisonner par l"absurde et trouver deux sous-suites ayant des limites distinctes.

Indication pour

l"exer cice

6 N1.En se rappelant que l"intégrale calcule une aire montrer :

1n+16Z

n+1 ndtt 61n
2.

Pour chacune des majorations, il s"agit de f airela somme de l"inég alitéprécédente et de s"aperce voirque

d"un coté on calculeHnet de l"autre les termes s"éliminent presque tous deux à deux. 3.

La limite est +¥.

4.

Calculer un+1un.

5.

Que f aitune suite décroissante et minorée ? Indication pourl"exer cice7 NPour la première question : attention on ne demande pas de calculera! L"existence vient du théorème des

valeurs intermédiaires. L"unicité vient du fait que la fonction est strictement croissante.

Pour la dernière question : il faut d"une part montrer que(xn)converge et on note`sa limite et d"autre part il

faut montrer que`=a.Indication pourl"exer cice8 NRemarquer que 11k

2=(k1)(k+1)k:k. Puis simplifier l"écriture deun.Indication pourl"exer cice10 N1.Montrer que (un)est croissante et(vn)décroissante.

5

2.Montrer que (un)est majorée et(vn)minorée. Montrer que ces suites ont la même limite.

3.

Raisonner par l"absurde : si la limite `=pq

alors multiplier l"inégalitéuq6pq

6vqparq! et raisonner

avec des entiers.Indication pourl"exer cice11 N1.C"est un calcul de réduction au même dénominateur .

2.

Pour montrer la décroisance, montrer

un+1u n61. 3. Montrer d"abord que la suite con verge,montrer ensuite que la limite est pa.quotesdbs_dbs47.pdfusesText_47
[PDF] montrer qu'une fonction admet un maximum

[PDF] montrer qu'une fonction admet un point fixe

[PDF] montrer qu'une fonction est convexe

[PDF] montrer qu'une fonction est majorée

[PDF] montrer qu'une matrice est diagonalisable

[PDF] montrer quune matrice est inversible et calculer son inverse

[PDF] montrer qu'une matrice est nilpotente

[PDF] montrer qu'une relation d'ordre est totale

[PDF] montrer qu'une suite convergente est stationnaire

[PDF] montrer qu'une suite est arithmétique

[PDF] montrer qu'une suite est arithmétique méthode

[PDF] montrer qu'une suite est croissante exemple

[PDF] montrer qu'une suite est de cauchy exercice corrigé

[PDF] montrer qu'une suite est géométrique de raison

[PDF] montrer qu'une suite est géométrique exemple