[PDF] Chapitre I : Continuité et dérivabilité des fonctions réelles





Previous PDF Next PDF



Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et

Exercice 12 : Soit f : R ? R continue et décroissante. Montrer que f admet un unique point fixe. Correction :Unicité : Soit g : x ?? f(x) ? x.



Exercices de mathématiques - Exo7

Montrer que f a un point fixe. Correction ?. [005393] Trouver les fonctions bijectives de [01] sur lui-même vérifiant ?x ? [0



Théorème du point fixe - Théorème de linversion locale

Théorème 7.1 (Théorème du point fixe). Soit ? une partie fermée de Rn et f une fonction contractante de ? dans ?. Alors f admet un unique point fixe a 



Cours 1 : Points fixes de fonctions monotones

7 nov. 2009 Par exemple l'unique point fixe de la fonction f de [0



Corrigé du TD no 11

Montrer que l'équation x2(cos x)5 + x sin x +1=0 admet au moins une solution de fonction continue g :]0 1[?]0



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Par exemple c'est aussi sur le théorème du point fixe que repose le Montrer que f admet en (0



Fonctions continues et uniformement continues

CNS pour qu'une fonction dérivable soit lipschitzienne. On a donc prouvé que ƒ admet un point fixe l dans I et que (un) converge vers l.



Isenmann - MPSI .. - Groupe .. Planche 1. Exercice 0. Soit f

19 janv. 2015 Montrer que f admet un point fixe. Exercice 1. Montrer qu'une fonction continue et périodique définie sur R est bornée. Exercice 2.



Chapitre I : Continuité et dérivabilité des fonctions réelles

On reconnaît graphiquement qu'une fonction est continue sur un intervalle I Exemple : Montrer que la fonction f(x) = cos x admet un point fixe sur [0;.



Problème 1 : étude de points fixes

Démontrer que la fonction f admet un unique point fixe sur l'intervalle I = [01]. On pourra étudier la fonction auxiliaire g définie sur R par g(x) = f(x) - x.

ENIHP1 mathématiques continuité et dérivabilité p 1/10 Chapitre I : Continuité et dérivabilité des fonctions réelles

Le cours sera illustré à l'aide du logiciel de calcul formel gratuit Maxima. Les commandes en ligne sont précédée de (%i) en

police courrier. Ce logiciel est disponible sur internet (google: calcul formel maxima)

I - Continuité

1/ Définition

Définition de la continuité : Soit f une fonction réelle définie sur un intervalle I. Soit un réel a

appartenant à I. La fonction f est continue en a si ax→limf(x) = f(a) Par extension, f est dite continue sur I si elle est continue en tout réel a de I.

Remarques :

- Si f est continue en a, alors f doit être définie sur un " voisinage » de a de la forme ]a-ε ;a+ε[, ε>0.

- f est continue à droite en a si f est définie sur un " voisinage » de a de la forme [a ;a+ε[, ε>0 et

+→axlimf(x) = f(a). - On reconnaît graphiquement qu'une fonction est continue sur un intervalle

I si elle peut être tracée sans

lever le crayon. Corollaire 1 : L'image d'un intervalle fermé borné [a ;b] par une fonction continue est un intervalle fermé borné [m ;M]. De plus la fonction atteint ses bornes.

Corollaire 2 :

- En appliquant les propriétés sur les opérations avec les limites, le produit, la somme de fonctions

continues est continue (voir le cours sur les limites). - Les fonctions polynômes, cos x et sin x, ex sont continues sur Ë. - La fonction x est continue sur [0 ;+õ[, ln(x) est continue sur ]0 ;+õ[. - Les fonctions rationnelles sont continues sur tout intervalle contenu dans leur ensemble de définition.

-Les fonctions construites algébriquement à partir des fonctions usuelles sont continues sur leur

ensemble de définition. ENIHP1 mathématiques continuité et dérivabilité p 2/10 Exemple : Montrer que la fonction f définie par f(x)=x² ln x pour x >0 et f(0)=0 est continue en 0 puis sur [0;+ (%i) f(x):=x^2*log(x); (%i) limit(f(x)), x, 0, plus); (%i) plot2d([x^2*log(x),[x,0,2]);

2/ Application : Existence de solutions pour l'équation f(x) = k

Théorème des valeurs intermédiaires :

Soit f une fonction continue sur un intervalle fermé [a ;b]. Alors, pour tout réel λ compris entre f(a) et f(b), il existe au moins un réel c compris dans [a ;b] tel que f(c) = λ.

Justification graphique :

Remarque

: Ce théorème ne montre que l'existence mais pas l'unicité. Exemple : Montrer que la fonction f(x) = cos x admet un point fixe sur [0; 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x cos(x)x (%i20) plot2d([cos(x),x],[0,%pi/2]); (%i25) find_root(x=cos(x), x, 0, %pi/2); ENIHP1 mathématiques continuité et dérivabilité p 3/10

II Nombre dérivé

Définition :

Soit f une fonction définie sur un intervalle I, un réel a ? I, et h un réel non nul (a+h ? I).

f est dérivable en a si le taux d'accroissement f(a+h)-f(a) h admet une limite finie l quand h tend vers 0. l est appelé le nombre dérivé de f en a et on note f'(a)=l.

Interprétation géométrique : Tangente

Si f est dérivable en a, la tangente (Ta) à Cf au point A d'abscisse a a pour coefficient directeur f'(a).

Une équation de (T

a) est : (Ta) y = f'(a) (x-a) + f(a)

Interprétation numérique

Si f est dérivable en a, on a f(a+h) = f(a) + f'(a) h + h ε(h) avec 0lim→hε(h) =0 • f(a) + f'(a) h + h ε(h) est appelé développement limité d'ordre 1 de f en a.

• Si h voisin de 0, on a f(a+h) ≈ f(a) + f'(a) h, approximation affine de f(a+h) au voisinage de a.

Exemple d'application :

1/ Démontrer que la f

onction f définie par f(x)=x² ln x pour x >0 et f(0)=0 est dérivable en 0. (%i) limit(f(x)/x,x,0,plus);

2/ Déterminer la meilleure approximation affine de (1+x)

n pour x voisin de 0. (%i20) diff((1+x)^n,x); (%i28) taylor((1+x)^n,x,0,1); ENIHP1 mathématiques continuité et dérivabilité p 4/10

III Fonction dérivée

Définition : Lorsque f est dérivable en tout point de l'intervalle I, on dit que f est dérivable sur I et on

note f'(x) la fonction qui à tout réel x de I associe le nombre dérivé de f en x.

1/ Dérivées des fonctions usuelles

Le tableau ci-dessous sera complété au cours de l'année f(x)= f'(x)= f dérivable sur k x xn (n?N* xα (α ? Ë) x cos x sin x tan x ex ln x

2/ Opérations et fonctions dérivées

• Si u et v sont 2 fonctions dérivables sur I alors u+v, k × u (k?Ë) et uv le sont aussi et :

(u+v)' = u' + v' (ku)'=k u' (uv)'= u'v + uv' Si u et v sont dérivables sur I et v non nul sur I, 1 v et u v sont dérivables sur I et : ( 1 v )'=- v'v² ( u v )'= u'v-uv' v²

Conséquence :

Les fonctions polynômes et les fonctions rationnelles sont dérivables sur leur domaine de définition. Exemple : Calculer la dérivée de f(x)=x ln x - x après avoir précisé Df. (%i29) diff(x*log(x)-x,x);

3/ Dérivée d'une fonction composée

Dérivée d'une fonction composée (admis): Soit v une fonction dérivable sur J. Soit u une fonction dérivable sur I telle que pour tout x de I, u(x) appartient à J. Alors la fonction f(x) = v o u (x) est dérivable sur I et : f'(x)= v'(u(x)) ×××× u'(x) ( (v o u)' = (v' o u) u' )

ENIHP1 continuité et dérivabilité p. 5

Applications de la dérivée d'une fonction

composée f f' I u(ax+b) sin (ax+b) un , n ? É xα (α ? Ë) eu ln u

Exemple :

Calculer la dérivée de ln 1²1

xx et de e

2x² après avoir précisé Df

(%i29) diff(log((x+1)/(x^2+1)),x);

4/ Classe d'une fonction

Dérivées successives :

Soit f une fonction dérivable sur I.

f'(x) est appelée dérivée première de f sur I. Si

f'(x) est également dérivable sur I alors on définit la fonction dérivée de f'(x) notée f''(x) et appelée

fonction dérivée seconde de f : (f'(x))'=f''(x).

Pour la dérivée d'ordre 3, 4, on note

f(3)(x) f(4)(x)

Classe d'une fonction

: Soit n ? É. On dit que f est de classe Cn sur I ssi : f est n fois dérivable sur I f(n) est continue sur I

f est de classe C0 si f est continue sur I et de classe Cõ si f est infiniment dérivable (cos x).

Propriété

: Si f et g sont de classe Cn alors : (f+g), fg, f g (g non nulle sur I) g o f sont de classe Cn. Exemple : Calculer la dérivée première, deuxième, troisième de ln(1+x) et (1+x)n (%i40) diff(log(1+x),x,4);

5/ Notations différentielles.

Notation différentielle :

En posant Δx = h et Δy= f(x+Δx) -f(x), on obtient :

Δy = f'(x) Δx + Δx ε(Δx) avec 0lim→hε(Δx ) =0 et au voisinage de x : Δy ≈ f'(x) Δx

En physique on note

f'(x) = df dx f''(x) = d²f dx²

ENIHP1 continuité et dérivabilité p. 6

IV Fonction réciproque

1/ Définition

Théorème fondamental : Soit f une fonction continue et strictement monotone sur un intervalle I alors, - f(I) est un intervalle dont les bornes sont les limites des bornes de I. - f réalise une bijection de I sur f(I) - La fonction réciproque de f, notée f -1, est strict. monotone et de même sens que f. - La fonction réciproque f -1 est continue sur f(I).

Exemple : Déterminer l'image des intervalles suivant par une fonction continue strictement monotone

Intervalle [a,b] ]a,b[ [a,b[ ]a,b]

f ↑ f ↓ Application : Résoudre l'équation f(x)=λλλλ • Si f est une fonction dérivable sur [a ;b], • Si f est strictement monotone sur [a;b], • et Si λ est compris entre f(a) et f(b), alors, l'équation f(x)=λλλλ admet une unique solution sur [a ;b]. Théorème fondamental suite : Soit f une fonction continue et strictement monotone sur un intervalle I.

Si de plus f est dérivable en x0 ?I avec f'(x0) non nul alors f -1 est dérivable en y0=f(x0) et :

(f -1)'(y0)= 1 f'(x 0) En particuliers si f '(x) ne s'annule pas sur I, (f-1)'= 1'1-off

2/ Application aux fonctions trigonométriques réciproques arc sin et arc tan

ENIHP1 continuité et dérivabilité p. 7

ENIHP1 continuité et dérivabilité p. 8

IV Applications de la fonction dérivée

1/ Sens de variation

Théorème 1 (admis):

Soit f une fonction dérivable sur I,

• si f'(x) est positive sur I, alors f est croissante sur I • si f'(x) est négative sur I, alors f est décroissante sur I • si f'(x) est nulle sur I, alors f est constante sur I Remarque : Si f conserve le même sens de variation sur I, f est dite monotone sur I.

Application : Résoudre l'équation f(x)=0

quotesdbs_dbs47.pdfusesText_47
[PDF] montrer qu'une fonction est convexe

[PDF] montrer qu'une fonction est majorée

[PDF] montrer qu'une matrice est diagonalisable

[PDF] montrer quune matrice est inversible et calculer son inverse

[PDF] montrer qu'une matrice est nilpotente

[PDF] montrer qu'une relation d'ordre est totale

[PDF] montrer qu'une suite convergente est stationnaire

[PDF] montrer qu'une suite est arithmétique

[PDF] montrer qu'une suite est arithmétique méthode

[PDF] montrer qu'une suite est croissante exemple

[PDF] montrer qu'une suite est de cauchy exercice corrigé

[PDF] montrer qu'une suite est géométrique de raison

[PDF] montrer qu'une suite est géométrique exemple

[PDF] montrer qu'une suite est geometrique ts

[PDF] montrer qu'une suite n'est pas géométrique