[PDF] Réduction Montrer qu'il existe un





Previous PDF Next PDF



Mathématiques D08S

14 déc. 2013 b) Soit A une matrice nilpotente. Montrer que e(A) est inversible et calculer son inverse. On remarque que si A est nilpotente ?A aussi.



Mathématiques 2 PSI

2 avr. 2019 nilpotente est semblable à une matrice triangulaire à diagonale nulle. Q 17. Démontrer que si est une matrice nilpotente d'indice



Préparation à lAgrégation Interne

15 juil. 2010 Montrer qu'une matrice nilpotente est diagonalisable ssi elle est nulle. Exercice 22 (Entraînement). Montrer que pour n = 2.



Réduction

Montrer qu'il existe un couple d'endomorphismes (dn) et un seul tel que d est diagonalisable



Chapitre 8 — alg`ebre linéaire — exercices corrigés page 1

Montrer que An est la matrice nulle. b. (***) Réciproquement montrer que toute matrice nilpotente de Mn(K) est semblable `a une matrice triangulaire.



PSI MATHÉMATIQUES DS1bis

3 oct. 2020 Quelles sont les matrices de MnpCq à la fois nilpotentes et diagonalisables ? 14. Montrer qu'une matrice est nilpotente si et seulement si



MPSI 2 : DL 08

Q 2 Soit une matrice A = ((aij)) ? T dont les coefficients diagonaux aii sont tous nuls. a. Montrer que A est nilpotente d'indice inférieur ou égal `a n. b.



Colle semaine 12 MP*

8 janv. 2021 Montrer qu'une matrice est nilpotente ssi elle est trigonalisable avec ... 1) Montrer que si un endomorphisme est nilpotent alors il existe ...



? ? ? ? ? ? ?

Montrer que si Q est positif sur R alors P l'est aussi. PSI 774 (Mines 774.) Soit M ? M3(C) une matrice nilpotente et p ? N son indice de nilpotence.



M P S I 2

5 févr. 2021 Il n'y a qu'une matrice nilpotente d'ordre 1 (par définition : M1 = 0nn)

Exo7

Réduction

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

I : Incontournable

Exercice 1**SoitA=0

@1 2 2 2 1 2

2 2 11

A . Pournentier relatif donné, calculerAnpar trois méthodes différentes. @3 0 0 8 4 0

5 0 11

A @3 1 0 41 0
4 821 A 1.

Vérifier que An"est pas diagonalisable.

2.

Déterminer K er(AI)2.

3. Montrer que Aest semblable à une matrice de la forme0 @a0 0 0b c 0 0b1 A 4.

Calculer Anpournentier naturel donné.

Vérifier quefest un endomorphisme deR2n[X]puis déterminer les valeurs et vecteurs propres def.fest-il

diagonalisable ? etB=X4X.

Vérifier quefest un endomorphisme deEpuis déterminer Kerf, Imfet les valeurs et vecteurs propres def.

Exercice 6***SoitAune matrice rectangulaire de format(p;q)etBune matrice de format(q;p). Comparer les polynômes

caractéristiques deABetBA. et quevest nilpotent. Montrer que det(u+v) =detu. Montrer queAest nilpotente si et seulement si8k2[[1;n]], Tr(Ak) =0. quefest nilpotent. Soientuetvdeux endomorphismes deEtels que9(a;b)2C2=uvvu=au+bv. Montrer queuetvont un vecteur propre en commun. 1.

Montrer que (E;)est un groupe

2. Soit Aun élément deEtel que9p2N=Ap=I2. Montrer queA12=I2. A A

Calculer detM. Déterminer les éléments propres deMpuis montrer queMest diagonalisable si et seulement si

Aest diagonalisable.

B

BBB@0b:::b

a .........b a:::a01 C CCCA. 2

Montrer que les images dans le plan complexe des valeurs propres deAsont cocycliques. (Indication : pour

calculercA, considérerf(x) =

X+x b+x:::b+x

a+x......... .........b+x a+x:::a+xX+x 1.

Montrer que 1 est v aleurpropre de A.

2.

Soit lune valeur propre deA.

(a)

Montrer que jlj61.

(b) Montrer qu"il e xisteun réel wde[0;1]tel quejlwj61w. Conséquence géométrique ? B

BBB@0:::0 1

.........0 0

1 0:::01

C CCCA

Montrer queAest diagonalisable.

B

BBBBBB@0 1 0:::0

......0 0 ...1

1 0::: :::01

C

CCCCCCA(de formatn>3). DiagonaliserJn.

2.

En déduire la v aleurde

a

0a1:::an2an1

a n1a0a1an2............ a

2...a0a1

a

1a2:::an1a0

3

1.Calculer det (Ps)pour touts2Sn.

2. (a)

Montrer que 8(s;s0)2S2n,PsPs0=Pss0.

(b) On pose G=fPs;s2Sng. Montrer que(G;)est un groupe isomorphe àSn. 3.

Soit A= (ai;j)16i;j6n2Mn(C). CalculerAPs.

4.

T rouverles v aleurspropres d"une matrice de pemutation (on pourra utiliser le résultat hors programme

: toute permutation se décompose de manière unique à l"ordre près des facteurs en produit de cycles à

supports disjoints). caractéristique est scindé surK.

Montrer qu"il existe un couple d"endomorphismes(d;n)et un seul tel quedest diagonalisable,nest nilpotent

netf=d+n. a b:::b b a .........b b:::b a dansC.

8x2R,(j(f))(x) =1x

R x

0f(t)dtsix6=0 et(j(f))(0) =f(0).

1.

Montrer que jest un endomorphisme deE.

2. Etudier l"injecti vitéet la surjecti vitéde j. 3.

Déterminer les éléments propres de j.

que pourk2 f1;2;3g,fk=lku+mkv. Montrer quefest diagonalisable. 4 Exercice 26**IRésoudre dansM3(C)l"équationX2=0 @0 1 0 0 0 1

0 0 01

A Montrer quefetgsont simultanément trigonalisables. communes si et seulement si la matricecA(B)est inversible. inversible si et seulement siPetcfsont premiers entre eux. B

B@1 1 0 0

0 1a0

0 0 1b

0 0 0 11

C CA. Peut-on trouver deux matrices distinctes semblables parmi les quatre matrices M

0;0,M0;1,M1;0etM1;1?

B

BBB@1 0:::0

2 n0:::01 C CCCA. B

BB@0:::0a1.........

0:::0an1

a

1:::an1an1

C CCAoùa1,...,ansontnnombres complexes (n>2).Aest-elle diagonalisable? parfdans chacun des cas suivants : 5 1.A=0 @1 11 1 1 1

1 1 11

A 2.A=0 @2 2 1 1 3 1

1 2 21

A 3.A=0 @66 5 41 10
76 41
A @1 37 2 614 1 371 A

Commutant de

0 @1 01 1 2 1

2 2 31

A

Estable parf. On suppose quefest diagonalisable. Montrer que la restriction defàFest un endomorphisme

diagonalisable deF. entier pair. Correction del"exer cice1 N1ère solution.A=2JI3oùJ=0 @1 1 1 1 1 1

1 1 11

A . On aJ2=3Jet plus généralement8k2N,Jk=3k1J. Soitn2N. Puisque les matrices 2JetIcommutent, la formule du binôme de NEWTONpermet d"écrire A n= (2JI)n= (I)n+nå k=1 n k (2J)k(I)nk= (1)nI+ nå k=1 n k 2 k3k1(1)nk! J = (1)nI+13 nå k=1 n k 6 k(1)nk!

J= (1)nI+13

((61)n(1)n)J 13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A ce qui reste vrai quandn=0.

Soit de nouveaun2N.

((1)nI+13 (5n(1)n)J)((1)nI+13 (5n(1)n)J) =I+13 ((5)n1+(5)n1)J+19 (1(5)n(5)n+1)J2 =I+13 ((5)n1+(5)n1)J+39 (1(5)n(5)n+1)J=I; et donc A n=13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A

Finalement

8n2Z,An=13

0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A .2ème solution.Puisque rg(A+I) =1, dim(Ker(A+I)) =2 et1 est valeur propre deAd"ordre au moins

2. La troisième valeur proprelest fournie par la trace :l11=3 et doncl=5. Par suite,cA=

(X+1)2(X5).

De plus,0

@x y z1 A

2E1,x+y+z=0 et doncE1=Vect(e1;e2)oùe1=0

@1 1 01 A ete2=0 @1 0 11 A

De même,

0 @x y z1 A

2E1,x=y=zetE5=Vect(e3)oùe3=0

@1 1 11 A

On poseP=0

@1 1 1 1 0 1 01 11 A etD=diag(1;1;5)et on aA=PDP1.

Calcul deP1. Soit(i;j;k)la base canonique deR3.

8 :e 1=ij e 2=ik e

3=i+j+k,8

:j=ie1 k=ie2 e

3=i+ie1+ie2,8

>:i=13 (e1+e2+e3) j=13 (2e1+e2+e3) k=13 (e12e2+e3) 7 et doncP1=13 0 @12 1 1 12

1 1 11

A . Soit alorsn2Z. A n=PDnP1=13 0 @1 1 1 1 0 1 01 11 A0 @(1)n0 0

0(1)n0

0 0 5 n1 A0 @12 1 1 12

1 1 11

A 13 0 @(1)n(1)n5n (1)n0 5n

0(1)n5n1

A0 @12 1 1 12

1 1 11

A =13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A

et on retrouve le résultat obtenu plus haut, le calcul ayant été mené directement avecnentier relatif.

3ème solution.Soitn2N. La division euclidienne deXnparcAfournit trois réelsan,bnetcnet un polynôme

Qtels queXn=cAQ+anX2+bnX+cn. En prenant les valeurs des membres en 5, puis la valeur des deux membres ainsi que de leurs dérivées en1 , on obtient 8 :25an+5bn+cn=5n a nbn+cn= (1)n

2an+bn=n(1)n1,8

:b n=2ann(1)n

35an+cn=5n(1)n+5n

an+cn=(n1)(1)n,8 >:a n=136 (5n+(6n1)(1)n) cquotesdbs_dbs47.pdfusesText_47
[PDF] montrer qu'une relation d'ordre est totale

[PDF] montrer qu'une suite convergente est stationnaire

[PDF] montrer qu'une suite est arithmétique

[PDF] montrer qu'une suite est arithmétique méthode

[PDF] montrer qu'une suite est croissante exemple

[PDF] montrer qu'une suite est de cauchy exercice corrigé

[PDF] montrer qu'une suite est géométrique de raison

[PDF] montrer qu'une suite est géométrique exemple

[PDF] montrer qu'une suite est geometrique ts

[PDF] montrer qu'une suite n'est pas géométrique

[PDF] Montrer que

[PDF] montrer que 2 vecteurs sont orthogonaux

[PDF] montrer que 3 points sont alignés complexe

[PDF] montrer que 3 points sont alignés géométrie dans l'espace

[PDF] montrer que 3 points sont alignés vecteurs