[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



Exercices de mathématiques - Exo7

Calculs d'intégrales. Fiche d'Arnaud Bodin soigneusement relue par Chafiq Benhida. 1 Utilisation de la définition. Exercice 1. Soit f la fonction définie 



Exercices de mathématiques - Exo7

Calculs de primitives et d'intégrales Calculer les intégrales suivantes (a b réels donnés



Exercices de mathématiques - Exo7

2 Propriétés de l'intégrale de Riemann. Exercice 1. En utilisant la définition d'une fonction intégrable au sens de Riemann montrer les propriétés 



Exercices de mathématiques - Exo7

182 224.02 Calcul approché d'intégrale. 781. 183 224.03 Intégrale de Riemann dépendant d'un paramètre Exercice 10 Le missionnaire et les cannibales.



Exercices de mathématiques - Exo7

) et en déduire F(x) pour tout réel x. Correction ?. [005766]. Exercice 3 ** I Un calcul de l'intégrale de GAUSS I 



Exercices de mathématiques - Exo7

dx. Correction ?. [005713]. Exercice 2. Etudier l'existence des intégrales suivantes.



Exercices de mathématiques - Exo7

Exercice 3. 1. Résoudre l'équation différentielle (x2 +1)y +2xy = 3x2 +1 sur R. Tracer des courbes intégrales. Trou- ver la solution vérifiant y(0) = 3.



Exercices de mathématiques - Exo7

Exercice 2 **. Soit ? = x2dx+y2dy. Calculer l'intégrale de ? le long de tout cercle du plan parcouru une fois dans le sens trigonométrique. Même question avec ? 



Exercices de mathématiques - Exo7

Corrections de Léa Blanc-Centi. 1 Fractions rationnelles. Exercice 1. Existe-t-il une fraction rationnelle F telle que. (F 



Exercices de mathématiques - Exo7

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exercice 5 **I Le lemme de LEBESGUE ... Par croissance de l'intégrale on a déjà.



Exo7 - Cours de mathématiques

Fiche d’exercices ? Calculs d’intégrales Motivation Nous allons introduire l’intégrale à l’aide d’un exemple Considérons la fonction exponentielle f (x) = ex On souhaite calculer l’aire Aen-dessous du graphe de f et entre les droites d’équation (x = 0) (x = 1) et l’axe (Ox) A y = ex x y 0 1 1



Calcul intégral Exercices corrigés

Exo7 Calculs d’intégrales Fiche d’Arnaud Bodin soigneusement relue par Cha?q Benhida 1 Utilisation de la dé?nition Exercice 1 Soit fla fonction dé?nie sur[0;4] par 8 1 si x=0 f(x) < 1 si 0 > : si x=1 2 si 1



Exo7 - Exercices de mathématiques

Exercice 6 ** I En utilisant un développement de 1 1 0t calculer R lnt t 1 dt Correction H [005718] Exercice 7 *** I Calculer R 1 0 t lnt dt (en écrivant R x 0 t1 dt = R x 0 lnt dt R x 0 1 dt) Correction H [005719] Exercice 8 1) (** I) Trouver un équivalent simple quand x tend vers +¥ de ex 2 R +¥ x e t dt 2) (***) Montrer que R +¥ a



Exo7 - Exercices de mathématiques

Exo7 Intégration Exercices de Jean-Louis Rouget Retrouver aussi cette ?che sur www maths-france * très facile ** facile *** dif?culté moyenne **** dif?cile ***** très dif?cile I : Incontournable Exercice 1 Etudier l’existence des intégrales suivantes 1) (**) R +¥ 0 x+2 p x2 +4x+1 dx 2) (**) R +¥ 1 e 1+ 1 x x dx 3) (**) R



Calcul intégral Exercices corrigés - Meabilis

Calcul intégral Exercices corrigés 1 1 Calcul de primitives 1 1 2 Basique 1 1 1 3 Basique 2 2 1 4 Centre de gravité (d’après bac pro) 2 1 5 QCM 1 3 1 6 QCM 2 3 1 7 QCM 3 4 1 8 Calcul d’intégrales fonction rationnelle 5 1 9 Fonction rationnelle France 2004 5 1 10 ROC Pondicherry 2005 6 1 11



Searches related to exo7 integrale exercice PDF

INTEGRAL CALCULUS - EXERCISES 44 (b) What would the stopping distance have been if the car had been traveling at only 54 kilometers per hour when the brakes were applied? (c) At what speed is the car traveling when the brakes are applied if the stopping distance is 56 meters? Results 1 1 6 x6 +C 2 4 7 x7 4 +C 3 ?1 x +C 4 5x+C 5 2 3 x3 2

Quels sont les exercices corrigés de calcul intégral?

Calcul intégral Exercices corrigés 1. 1. Calcul de primitives 1 1. 2. Basique 1 1 1. 3. Basique 2 2 1. 4. Centre de gravité (d’après bac pro) 2 1. 5. QCM 1 3 1. 6. QCM 2 3 1. 7. QCM 3 4 1. 8. Calcul d’intégrales, fonction rationnelle 5 1.

Comment calculer les intégrales d’une fonction ?

Exercice 2 Soient les fonctions dé?nies sur R, f(x)=x , g(x)=x2et h(x)=ex; Justi?er qu’elles sont intégrables sur tout intervalle fermé borné de R. En utilisant les sommes de Riemann, calculer les intégrales R 1 0f(x)dx, R 2 1g(x)dx et R x 0h(t)dt. Indication H Correction H Vidéo[002082]

Comment calculer l’intégrale d’un plan?

1. Comme m?0 et que fest positive sur [m; 0] , l’intégrale en question est l’aire de la partie de plan comprise entre l’axe des abscisses, la courbe (C) et les droites d’équation (x = m) et (x= 0). 2. a. Faisons, comme suggéré par l’énoncé, une intégration par parties : ( ) '( ) 1 '( ) ( )x x

Comment résoudre une équation différentielle?

Partie A :Résolution de l’équation différentielle (1) : y y xe' 2? =x. 1. Résoudre l’équation différentielle (2) : y y' 2 0? = , où ydésigne une fonction dérivable sur ?.

Exercices de mathématiques - Exo7 Exo7

Équations différentielles

Fiche de Léa Blanc-Centi.

1 Ordre 1

Exercice 1Résoudre surRles équations différentielles suivantes:

1.y0+2y=x2(E1)

2.y0+y=2sinx(E2)

3.y0y= (x+1)ex(E3)

4.y0+y=xex+cosx(E4)

Déterminer toutes les fonctionsf:[0;1]!R, dérivables, telles que

8x2[0;1];f0(x)+f(x) =f(0)+f(1)

1.

Résoudre l"équationdifférentielle(x2+1)y0+2xy=3x2+1surR. Tracerdescourbesintégrales. Trouver

la solution vérifianty(0) =3. 2.

Résoudre l"équation dif férentielley0sinxycosx+1=0 sur]0;p[. Tracer des courbes intégrales.

Trouver la solution vérifianty(p4

) =1. de la constante :

1.y0(2x1x

)y=1 sur]0;+¥[

2.y0y=xkexp(x)surR, aveck2N

3.x(1+ln2(x))y0+2ln(x)y=1 sur]0;+¥[

On considère l"équation différentielle

y

0exey=a

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour 1 1.a=0

2.a=1 (faire le changement de fonction inconnuez(x) =x+y(x))

Dans chacun des cas, construire la courbe intégrale qui passe par l"origine.

Pour les équations différentielles suivantes, trouver les solutions définies surRtout entier :

1.x2y0y=0(E1)

2.xy0+y1=0(E2)

Exercice 7Résoudre

1.y003y0+2y=0

2.y00+2y0+2y=0

3.y002y0+y=0

4.y00+y=2cos2x

On considèrey004y0+4y=d(x). Résoudre l"équation homogène, puis trouver une solution particulière

lorsqued(x) =e2x, puisd(x) =e2x. Donner la forme générale des solutions quandd(x) =12 ch(2x). Résoudre sur]0;p[l"équation différentielley00+y=cotanx, où cotanx=cosxsinx.

Résoudre les équations différentielles suivantes à l"aide du changement de variable suggéré.

1.x2y00+xy0+y=0, sur]0;+¥[, en posantx=et;

2.(1+x2)2y00+2x(1+x2)y0+my=0, surR, en posantx=tant(en fonction dem2R).

3 Pour aller plus loin

Exercice 11Équations de Bernoulli et Riccatti1.Équation de Bernoulli (a)

Montrer que l"équation de Bernoulli

y

0+a(x)y+b(x)yn=0n2Zn6=0;n6=1

se ramène à une équation linéaire par le changement de fonctionz(x) =1=y(x)n1. (b) T rouverles solutions de l"équation xy0+yxy3=0.

2.Équation de Riccati

(a) Montrer que si y0est une solution particulière de l"équation de Riccati y

0+a(x)y+b(x)y2=c(x)

alors la fonction définie paru(x) =y(x)y0(x)vérifie une équation de Bernoulli (avecn=2). (b) Résoudre x2(y0+y2) =xy1 en vérifiant d"abord quey0(x) =1x est une solution. 1. Montrer que toute solution sur Rdey0+ex2y=0 tend vers 0 en+¥. 2.

Montrer que toute solution sur Rdey00+ex2y=0 est bornée. (Indication :étudier la fonction auxiliaire

u(x) =y(x)2+ex2y0(x)2.) 1.

Résoudre sur ]0;+¥[l"équation différentiellex2y00+y=0 (utiliser le changement de variablex=et).

2. T rouvertoutes les fonctions de classe C1surRvérifiant

8x6=0;f0(x) =f1x

Indication pourl"exer cice2 NUne telle fonctionfest solution d"une équation différentielley0+y=c.Indication pourl"exer cice3 N1.xest solution particulière

2. cos est solution particulière Indication pourl"exer cice4 NSolution particulière : 1.12x 2. xk+1k+1exp(x) 3. lnx1+ln2(x)Indication pourl"exer cice5 N1. C"est une équation à variables séparées.

Indication pour

l"exer cice

6 N1.une infinité de solutions

2. une solution Indication pourl"exer cice8 NPour la fin: principe de superposition.

Indication pour

l"exer cice

9 NUtiliser la méthode de variation de la constante.

Indication pour

l"exer cice

11 N1.(a) Se ramener à

11nz0+a(x)z+b(x) =0.

(b)y=1plx2+2xouy=0. 2. (a)

Remplacer yparu+y0.

(b)y=1x +1xlnjxj+lxouy=1x .4

Correction del"exer cice1 N1.Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Oncommenceparrésoudrel"équationhomogèneassociéey0+2y=0: lessolutionssontlesy(x)=le2x, l2R.

Il suffit ensuite de trouver une solution particulière de(E1). Le second membre étant polynomial de degré

2, on cherche une solution particulière de la même forme:

y

0(x) =ax2+bx+cest solution de(E1)

() 8x2R;y00(x)+2y0(x) =x2 () 8x2R;2ax2+(2a+2b)x+b+2c=x2 Ainsi, en identifiant les coefficients, on voit quey0(x) =12 x212 x+14 convient.

Les solutions de(E1)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =12 x212 x+14 +le2x(x2R) oùlest un paramètre réel. 2.

Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Les solutions de l"équation homogène associéey0+y=0 sont lesy(x) =lex,l2R.

Il suffit ensuite de trouver une solution particulière de(E2). Le second membre est cette fois une fonction

trigonométrique, on cherche une solution particulière sous la forme d"une combinaison linéaire de cos et

sin: y

0(x) =acosx+bsinxest solution de(E2)

() 8x2R;y00(x)+y0(x) =2sinx () 8x2R;(a+b)cosx+(a+b)sinx=2sinx Ainsi, en identifiant les coefficients, on voit quey0(x) =cosx+sinxconvient.

Les solutions de(E2)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =cosx+sinx+lex(x2R) oùlest un paramètre réel. 3.

Les solutions de l"équation homogène associée y0y=0 sont lesy(x)=lex,l2R. On remarque que le

second membre est le produit d"une fonction exponentielle par une fonction polynomiale de degréd=1:

or la fonction exponentielle du second membre est la même (ex) que celle qui apparaît dans les solutions

de l"équation homogène. On cherche donc une solution particulière sous la forme d"un produit deexpar

une fonction polynomiale de degréd+1=2: y

0(x) = (ax2+bx+c)exest solution de(E3)

() 8x2R;y00(x)y0(x) = (x+1)ex () 8x2R;(2ax+b)ex= (x+1)ex Ainsi, en identifiant les coefficients, on voit quey0(x) = (12 x2+x)exconvient.

Les solutions de(E3)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) = (12 x2+x+l)ex(x2R) oùlest un paramètre réel. 5

4.Les solutions de l"équation homogène associée y0+y=0 sont lesy(x) =lex,l2R. On remarque que

le second membre est la somme d"une fonction polynomiale de degré 1, d"une fonction exponentielle

(différente deex) et d"une fonction trigonométrique. D"après le principe de superposition, on cherche

donc une solution particulière sous la forme d"une telle somme: y

0(x) =ax+b+mex+acosx+bsinxest solution de(E4)

() 8x2R;y00(x)+y0(x) =xex+cosx () 8x2R;ax+a+b+2mex+(a+b)cosx+(a+b)sinx=xex+cosx Ainsi, en identifiant les coefficients, on voit que y

0(x) =x112

ex+12 cosx+12 sinx convient.

Les solutions de(E4)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =x112 ex+12 cosx+12 sinx+lex(x2R)

oùlest un paramètre réel.Correction del"exer cice2 NUne fonctionf:[0;1]!Rconvient si et seulement si

•fest dérivable •fest solution dey0+y=c •fvérifief(0)+f(1) =c(oùcest un réel quelconque)

Or les solutions de l"équation différentielley0+y=csont exactement lesf:x7!lex+c, oùl2R(en effet,

on voit facilement que la fonction constante égale àcest une solution particulière dey0+y=c). Évidemment

ces fonctions sont dérivables, etf(0)+f(1) =l(1+e1)+2c, donc la troisième condition est satisfaite si et

seulement sil(1+e1) =c. Ainsi les solutions du problème sont exactement les f(x) =l(ex1e1)

pourl2R.Correction del"exer cice3 N1.Comme le coef ficientde y0ne s"annule pas, on peut réécrire l"équation sous la forme

y 0+2xx

2+1y=3x2+1x

2+1 (a)

Les solutions de l"équation homogène associée sont les y(x) =leA(x), oùAest une primitive de

a(x) =2xx

2+1etl2R. Puisquea(x)est de la formeu0u

avecu>0, on peut choisirA(x) = ln(u(x))oùu(x) =x2+1. Les solutions sont donc lesy(x) =leln(x2+1)=lx 2+1. (b)

Il suf fitensuite de trouv erune solution particulière de l"équation a vecsecond membre: on remarque

quey0(x) =xconvient. (c)

Les solutions sont obtenues en f aisantla somme:

y(x) =x+lx

2+1(x2R)

oùlest un paramètre réel. 6 (d)y(0) =3 si et seulement sil=3. La solution cherchée est doncy(x) =x+3x 2+1. Voici les courbes intégrales pourl=1;0;:::;5.011 2.

On commence par remarquer que y0(x) =cosxest une solution particulière. Pour l"équation homogène:

sur l"intervalle considéré, le coefficient dey0ne s"annule pas, et l"équation se réécrit

y

0cosxsinxy=0

Les solutions sont lesy(x) =leA(x), oùl2RetAest une primitive dea(x) =cosxsinx. Puisquea(x)est de la forme u0u avecu>0, on peut choisirA(x)=ln(u(x))avecu(x)=sinx. Les solutions de l"équation sontquotesdbs_dbs28.pdfusesText_34
[PDF] conditions nécessaires ? la vie

[PDF] les historiens et les mémoires de la seconde guerre mondiale fiche de revision

[PDF] le petit chaperon rouge perrault texte

[PDF] le petit chaperon rouge perrault morale

[PDF] svt seconde la terre une planète habitable qcm

[PDF] la protection de la propriété intellectuelle au maroc

[PDF] loi propriété intellectuelle maroc

[PDF] code de la propriété intellectuelle maroc pdf

[PDF] loi 17.97 maroc

[PDF] loi 23-13 maroc

[PDF] marque maroc

[PDF] petit chaperon rouge version moderne

[PDF] plan comptable marocain pdf

[PDF] plan comptable marocain detaillé

[PDF] plan comptable marocain classe 6