[PDF] Corrigé du TD no 9 D'autre part on constate





Previous PDF Next PDF



Valeurs absolues. Partie entière. Inégalités

fonction de n. Correction ▽. [005153]. Exercice 9 **I. Soient x un réel. Déterminer Correction de l'exercice 18 △. Soit x ∈ R. Montrons par récurrence que ...



Ayoub et les maths

Soit la fonction partie entière définie sur ℝ. On rappelle que pour tout réel ( ) est le plus grand entier relatif inférieur ou égal à .



Exercices corrigés danalyse (avec rappels de cours) A. Lesfari

entière . . . . . . . . . . 10. 1.1.4 Valeur absolue ... fonction dérivable. Si f : I −→ R est dérivable sa dérivée



Mathématiques SN4 Mathématiques SN4

May 25 2020 Exercices associés dans Netmath : ○ Fonctions partie entière;. ○ Étudier le graphique de la fonction partie entière de la forme f(x) = [bx].



MSI 101 MSI 101

Exercice 8. Soit E(x) la partie entière de x. Déterminer l'ensemble de définition des fonctions suivantes : f : x ↦→ √x − E(x) g : x ↦→ E(x) + √x 



Corrigé TD 3 Exercice 1.

Exercice 1. Montrer que E(x). +∞. ∼ x et que E(x). −∞. ∼ x où E(x) désigne la fonction partie entière. Par définition de la partie entière on a. E(x) ≤ x 



Corrigé du TD no 11

la partie entière nous avons : 10nα ≤ ⌊10nα⌋ < 10nα + 1 d'où : α ≤ un valeur absolue est continue donc la fonction



350 exercices corrigés dAnalyse 350 exercices corrigés dAnalyse

❏ Partie entière : soit x ∈ R il existe un unique entier relatif p ∈ Z Elle est de classe C∞ sur cet intervalle. ❏ Fonction arccos : l'application ...



Mathématiques : du lycée aux CPGE scientifiques

On exprimera Nn à l'aide les fonctions partie entière et logarithme décimal. 51. Page 52. Exercice 139 ( 3 ). Déterminer la limite de la suite (un)n≥1 



chapitre 5 : fonction partie entière - solutionnaire

CHAPITRE 5 : FONCTION PARTIE ENTIÈRE. SOLUTIONNAIRE-----------> EXERCICES SUPPLÉMENTAIRES. 1- C 2- B. Page 2. 4. a) B b) D c) A d) C. 5. a) D b) C c) A d) B 



FONCTIONS - Généralités

8) Etude et représentation graphique de la fonction polynôme du 2iem degré: 12)La fonctions partie entière ... 2) Quelques exercices d'application.



Corrigé Série dexercices n°4 : Les fonctions et procédures

Exercice 1 : Ecrire une fonction ou procédure qui calcule la partie entière d'un nombre positif. Fonction entiere (x : reel) : 



Valeurs absolues. Partie entière. Inégalités

Partie entière. Inégalités. Exercices de Jean-Louis Exercice 1 **I Moyennes arithmétique géométrique et harmonique ... fonction de n. Correction ?.



MSI 101

Exercice 8. Soit E(x) la partie entière de x. Déterminer l'ensemble de définition des fonctions suivantes : f : x ?? ?x ? E(x).



DM4 correction - Arnaud Jobin

Dans tout l'exercice X désigne une variable aléatoire suivant la loi On rappelle qu'on appelle fonction partie entière la fonction suivante.



Propriétés de R Partie Entière Exercice 1. ? “( Exercice 2. ? “ Exercice

7 nov. 2018 Discuter en fonction de la parité de ?x?. Exercice 4. 1) On écrit nk ? ?nx? < nk + n ? 1 si ?x? = k ...



ECE3 2009-2010 : Un an de maths

25 juin 2010 1.6.2 Les fonctions partie entière et décimale héfinition ITF v— fon™tion p—rtie entière est définie sur R de l— f—çon suiv—nte X Ent(x) est ...



Chapitre 18 FONCTIONS RÉELLES CONTINUITÉ Enoncé des

Ainsi f n'a pas de limite en 0. Exercice 12.15. 1. On sait que la fonction partie entière est continue sur R Z et est continue à droite en tout 



1 Généralités

Les exercices marqués d'une ? sont censés être plus compliqués. Montrer que la fonction partie entière [0?[ x ? [x] ? N est mesurable.



Partie entière limites et suites - Ayoub et les maths

1)a) La partie entière rend la tâche légèrement plus compliquée que d’habitude On serait tentés d’écrire : lim ?????? 1 ???? = 0 et ???? 0/ = 0 donc par composition lim ?????? ???? 1 ???? / = 0 Sauf que cet argument en soi ne tient pas la route ici la fonction ????n’étant pas continue en 0 Remarquons que pour



Valeurs absolues Partie entière Inégalités - e Math

On veut montrer de manière élémentaire (c’est-à-dire en se passant du logarithme népérien et en ne travaillant qu’avec les deux opérations + et ) que pour n2N (1+ 1 n) n

Quelle est la fonction de la partie entière?

La fonction partie entière est souvent notée . car elle peut être confondue avec des parenthèses. De plus, il y a symétrie entre la partie entière inférieure (appelée en anglais floor, « plancher ») définie par l’ encadrement : et la partie entière supérieure (appelée en anglais ceiling, « plafond ») définie par :

Quels sont les propriétés de la fonction partie entière ?

Les propriétés de la fonction partie entière sont les suivantes: 1. Le domaine Les réels car la fonction utilisent tous les valeurs de ‘’y’’. C’est à dire ]-?,+? [, mais ceci se résume en IR. 2. L’image Les entiers car la fonction utilisent seulement des entiers, La partie entière se définie par l’entier plus petit que le nombre.

Qu'est-ce que la dérivée de la fonction partie entière ?

Une erreur, message à effacer... La dérivée de la fonction partie entière a u sens des fistributions est ce que l'on appelle le peigne de Dirac. Ce nest pas une fonction mais une distribution. Alors !

Quelle est la dérivée de la fonction partie entière a u sens des fistributions ?

La dérivée de la fonction partie entière a u sens des fistributions est ce que l'on appelle le peigne de Dirac. Ce nest pas une fonction mais une distribution. Alors ! A quoi ressemble cette distribution ? Alors ! A quoi ressemble cette distribution ? Elle vaut 0 pour tous les points non entiers, et l'infini pour les entiers!

CPP - 2013/2014 Fonctions réelles

J. Gillibert

Corrigé du TD n

o9Exercice 1

1. Montrer, à partir de la définition donnée en cours, que :

lim x→0x2= 0

Corrigé :D"après la définition, l"énoncé "limx→0x2= 0» se traduit de la façon suivante :

On souhaite montrer que cet énoncé est vrai, c"est-à-dire que, étant donné un réelε >0, il existe

de prendreδ=⎷ε, d"où le résultat.

2. Même question pour :

lim x→1? 1 +1x = 2 Corrigé :Comme précédemment, l"énoncé se traduit de la façon suivante : 1 +1x

Pour voir que cet énoncé est vrai, il faut montrer que, pour tout? >0, il existeδ >0satisfaisant

l"implication pour tout réelx?R?. Autrement dit, il faut traduire la condition|1x |x-1|. Pour cela, on procède par équivalences successives. Tout d"abord : ????1x

Pour simplifier, on peut supposer que1-ε >0, c"est-à-dire queε?]0,1[. En effet, si l"on peut

rendre|1x -1|plus petit que toute quantitéε?]0,1[, alors on peut aussi le rendre plus petit que

toute quantitéε≥1. De façon plus générale, on peut se restreindre à des valeurs suffisamment

petites deεquand on manipule la définition de limite d"une fonction en un point. Revenons à nos

moutons : si l"on suppose que1-ε >0, alors

Donc, si l"on poseδ= min(ε1+ε,ε1-ε) =ε1+ε(la plus petite des deux quantités en valeur absolue),

1

Exercice 2

1. Traduire par une formule mathématique (avec quantificateurs) l"affirmation

lim x→0ln(1 +x) = 0 Corrigé :Par définition de la limite, l"affirmation se traduit par

2. Déterminer un réelδ >0tel que

surx. Nous avons

Soitδ= min(e10-3-1,1-e-10-3). Alorsδsatisfait bien la propriété voulue. Pour ceux qui sont

curieux de connaître la valeur exacte deδ, on peut faire le raisonnement suivant : l"analyse des

variations de la fonctiont?→et+e-tmontre que celle-ci atteint son minimum en0, donc ce minimum est égal à2. En particuliere10-3+e-10-3≥2. On en déduit queδ= 1-e-10-3.

Exercice 3

a) Nous avons, pour toutx?R, la majoration suivante ????xcos(ex)x 2+ 1? 2+ 1?

D"autre part

xx

2+ 1=1x+1x

donc cette quantité tend vers0quandxtend vers+∞. On en déduit que : lim x→+∞xcos(ex)x

2+ 1= 0.

b) Commesinxest borné,x-sinxtend vers+∞quandxtend vers+∞. On en déduit que lim x→+∞ex-sinx= +∞ c) Pourx >1, la partie entière de1x est nulle. Par conséquent pour toutx >1,x?1x = 0.

Donc la limite cherchée vaut0.

d) Nous avons : sin(xlnx)x =sin(xlnx)xlnxlnx Six→0, alorsxlnx→0. Donc par composition des limites on a : lim x→0sin(xlnx)xlnx= limy→0sinyy = 1

On en déduit que :

lim x→0sin(xlnx)x 2

Exercice 4

Soitf:R→Rla fonction définie par

f(x) =? ?xsix <1 x

8⎷xsix >4

1. L"allure du graphe defa été vue en TD!

2. On note d"abord quefest continue sur l"intervalle]-∞,1[, car elle est égale sur cet intervalle à la

fonctionx?→x. De même, la fonctionfest continue sur les intervalles]1,4[et]4,+∞[car elle est

égale à des fonctions continues sur chacun de ces intervalles. Il reste à étudier la continuité defen

1et en4. En1nous avons :

limx→1x<1f(x) = limx→1x<1x= 1 et limx→1x>1f(x) = limx→1x>1x 2= 1

donc les limites à droite et à gauche defen1sont égales àf(1), ce qui montre quefest continue

en1. On montre de même quefest continue en4. On en conclut quefest continue surR.

Exercice 5

1. La fonctionf:x?→x?x?n"est pas continue. En effet,f(x) = 0pour toutx?[0,1[, d"où :

lim x→1x<1f(x) = 0 et d"autre partf(1) = 1, donc la limite à gauche defen1n"est pas égale àf(1), ce qui montre quefn"est pas continue en1.

2. Nous allons montrer que la fonctiong:x?→ ?x?sin(πx)est continue surR. On note d"abord queg

est continue sur chacun des intervalles de la forme]n,n+ 1[avecn?Z. Il reste à montrer queg est continue en chaque entier relatif. Soitn?Z, alors lim x→nxng(x) =n·0 = 0

etg(n) =nsin(nπ) = 0. Doncga des limites à droite et à gauche ennqui sont égales àg(n), ce

qui montre quegest continue enn.

Exercice 6

On considère la fonctionfdéfinie surRparf(x) =xsinx.

1. Pour toutn?N, on posexn=π2

+ 2nπ. Alors la suite(xn)tend vers+∞, etsin(xn) = 1pour toutn, donc f(xn) =xnsin(xn) =xn doncf(xn)tend vers+∞.

2. Pour toutn?N, on poseyn= 2nπ. Alors la suite(yn)tend vers+∞, etsin(yn) = 0pour toutn,

donc f(yn) =ynsin(yn) = 0 doncf(yn)tend vers0.

3. Si la fonctionfavait une limite en+∞, alors (d"après le critère séquentiel) les suitesf(xn)etf(yn)

tendraient toutes les deux vers cette limite. Orf(xn)etf(yn)n"ont pas la même limite, doncfn"a pas de limite en+∞. 3

Exercice 7

On définit deux suites(un)n≥1et(vn)n≥1en posant : u n=12nπetvn=1π 2 + 2nπ. Ces deux suites tendent vers0quandntend vers+∞. De plus cos ?1u n? = cos(2nπ) = 1etcos?1v n? = cos?π2 + 2nπ? = 0

Par un raisonnement semblable à celui de l"exercice précédent, on en déduit que la fonctionx?→cos?1x

n"admet pas de limite en0.

Exercice 8

a) D"après le cours, la fonctionf1est prolongeable par continuité en0si et seulement si elle a une

limite finie en0. Or nous avons la majoration : Commesinxtend vers0quandxtend vers0, il en résulte quef1tend vers0en0. Donc on peut prolongerf1par continuité en0en posant :f1(0) = 0. b) Soitg:R→Rla fonction définie par g(x) = lnex+e-x2 Alorsgest dérivable surR, etg(0) = 0. La fonctionf2s"écrit f

2(x) =g(x)x

=g(x)-g(0)x On reconnaît le taux d"accroissement degentre0etx. Par conséquent,f2admet une limite finie en0, égale àg?(0). Calculons doncg?surR g ?(x) =? lnex+e-x2 =e x-e-x2 e x+e-x2 =ex-e-xe x+e-x Doncg?(0) = 0. Ainsi, en posantf2(0) = 0nous obtenons une fonctionf2continue surR. c) La fonctionf3est définie et continue surR\ {-1,1}. De plus, on calcule que : f

3(x) =11-x-21-x2=1 +x-2(1-x)(1 +x)=-1 +x(1-x)(1 +x)=-1(1 +x).

On en déduit quef3a pour limite-12

quandxtend vers1. Et donc en posantf3(1) =-12 nous obtenons une fonction continue surR\ {-1}. Par contre, en-1la fonctionf3ne peut pas

être prolongée par continuité, car elle n"admet pas une limite finie en ce point. Doncf3n"est pas

prolongeable par continuité surR.

Exercice 9

Soit f(x) =cosx1 +x2

1. Nous avons

????cosx1 +x2? car|cosx|est majoré par1et1 +x2est minoré par1. 4

2. Comme la fonctionfest majorée par1, on sait queSupx?Rf(x)est inférieur ou égal à1. D"autre

part on constate quef(0) = 1, donc1est à la fois un majorant et une valeur de la fonctionf. Par conséquent,Supx?Rf(x) = 1.

Exercice 10

Soitf:R→Rune fonction périodique de périodeT >0. On suppose quefadmet une limite finie (que

nous noterons?) quandxtend vers+∞. Nous allons montrer quefest constante. Soitx0?R, alors la suitex0+nTtend vers+∞, donc la suitef(x0+nT)converge vers?. D"autre part, on montre par récurrence que : f(x0+nT) =f(x0)pour toutn?N

c"est-à-dire que la suitef(x0+nT)est constante égale àf(x0). Doncf(x0) =?. Comme ce raisonnement

est valable pour n"importe quelle valeur dex0, on en déduit quefest constante égale à?.

Exercice 11

La fonctionf(x)-xétant bornée sur[x0,+∞[, il existe un réelMtel que

En divisant parxon trouve

?x≥x0,????f(x)x

Quand on fait tendrexvers+∞,Mx

tend vers0, donc|f(x)x -1|tend lui aussi vers0, d"où : lim x→+∞f(x)x = 1.

Exercice 12

1. On considère la fonctionfdonnée par

f(x) =? ⎷1-x2si|x|<1 ax

2+bx+csi|x| ≥1

Cette fonction est continue sur l"intervalle]-1,1[car elle est égale à la fonctionx?→⎷1-x2sur

cet intervalle. De même, elle est continue sur les intervalles]- ∞,-1[et]1,+∞[car elle est égale

à la fonctionx?→ax2+bx+csur ces intervalles. On en déduit quefest continue surRsi et seulement si elle est continue en-1et en1. Calculons les limites à droite et à gauche defen-1: lim x→-1x<-1f(x) = limx→-1x<-1ax

2+bx+c=a-b+c=f(-1)

et limx→-1x>-1f(x) = limx→-1x>-1?1-x2= 0 Doncfest continue en-1si et seulement sia-b+c= 0. Par un calcul semblable, on trouve que fest continue en1si et seulement sia+b+c= 0. Au final, pour quefsoit continue il faut que a,betcsoient solution du système?a-b+c= 0 a+b+c= 0 Finalement, on se demande si ce système admet des solutions. En additionnant les deux équation on trouve quea+c= 0, en les soustrayant on trouve queb= 0. Donc ce système admet une infinité de solutions en prenantb= 0eta=-c. 5

2. Soitn?N. D"après la formule du binôme de Newton nous avons :

(1 +x)n= 1 +nx+?n 2? x

2+···+nxn-1+xn

d"où : (1 +x)n-1x =n+?n 2? x+···+nxn-2+xn-1 Cette quantité tend versnquandxtend vers0. Donc on peut prolongerfpar continuité en0en posantf(0) =n.

Exercice 13

Soit?la limite (finie) defenx0. Prenonsε= 1dans la définition de la limite. Alors il existeδ >0tel

que, pour toutx?D:

C"est-à-dire que

Doncfest bornée dans le voisinageV= [x0-δ,x0+δ]dex0, ce qu"on voulait.

Exercice 14

1. Il suffit de montrer que tout intervalle de la forme]a,b[contient une infinité de rationnels et une

infinité d"irrationnels. Commençons par remarquer que : - la somme de deux nombres rationnels est un nombre rationnel; - la somme d"un nombre rationnel et d"un nombre irrationnel est un nombre irrationnel.

On distingue à présent deux cas :

(a) Le réelaest rationnel. Alors la suite?a+1n n≥1est une suite de nombres rationnels qui décroît

versa. L"intervalle]a,b[contient donc une infinité de valeurs de cette suite (plus précisément,

toutes les valeurs telles quensoit strictement supérieur à la partie entière de1b-a). De même,

la suite? a+⎷2 n n≥1est une suite de nombres irrationnels qui décroît versa, donc l"intervalle ]a,b[contient une infinité de valeurs de cette suite. (b) Le réelaest irrationnel. Il suffit alors de montrer l"existence d"un nombre rationnelcdans

l"intervalle]a,b[, puis d"appliquer le résultat précédent à l"intervalle]c,b[. Pour montrer l"exis-

tence dec, on procède comme suit : sib-a >1, alors il existe un nombre entier strictement compris entreaetb, donc c"est gagné. Dans le cas contraire, commeb-aest strictement positif, on peut toujours choisir un entierq≥2tel queq(b-a)>1. Mais alors il existe un nombre entier (que l"on notep) strictement compris entreqaetqb. Il en résulte que a < pq < b ce qu"on voulait.

2. En déduire que la fonctionδdéfinie surRpar

δ(x) =?1six?Q

0six??Q

est discontinue en tout point deR. 6quotesdbs_dbs12.pdfusesText_18
[PDF] partie entière encadrement

[PDF] fonction partie entière propriétés pdf

[PDF] fonctions périodiques exercices

[PDF] calcul pgcd

[PDF] fonction du poète

[PDF] nature d'un quadrilatère trapeze

[PDF] justifier la nature d'un rectangle

[PDF] sujet de rédaction 6ème pdf

[PDF] redaction 6eme gratuit

[PDF] rédaction 6ème méthode

[PDF] exercices français 6ème rédaction

[PDF] type de document exemple

[PDF] nature de texte français

[PDF] comment présenter une oeuvre littéraire

[PDF] définition d'un texte littéraire