[PDF] Cours de Probabilités Le nombre de permutation avec





Previous PDF Next PDF



Combinaisons avec répétition

sement une telle combinaison et `a proposer quelques démonstrations de théor`emes qui permettent de mettre l'ensemble des combinaisons avec répétition (cap 



Université Paris-Dauphine Modélisation et applications des

1.2.6 Combinaisons avec répétition . les considère alors comme une branche de la philosophie et l'idée de démonstration apparaît.



1. Ensembles équipotents cardinal fini

Arrangements et Combinaisons. 2.1. Arrangements avec répétitions: p-listes. Considérons la situation suiv- ante: Un libraire a un fournisseur et 3 clients.



1.Analyse Combinatoire 2.Probabilités 3.Variables Aléatoires 4.Lois

2.2 Arrangements avec Répétitions. 2.3 Arrangements sans Répétition 3.2 Permutations avec Répétitions. 4. Combinaisons ... 4.3 Combinaison avec Remises.



Cours de Probabilités

Le nombre de permutation avec répétitions est p! p1!p2!···pn! Démonstration : (Voir préalablement la définition d'une Combinaison sans répétition).



Dénombrement

On utilise les p-listes en cas de choix successifs de p éléments d'un ensemble avec éventuelles répétitions. 17.1.2 Arrangements et permutations.



Analyse combinatoire

Mar 6 2008 Les éléments sont pris sans répétition et ne sont pas ordonnés. Notation : le nombre de combinaisons de k parmi n est noté Cn



Chapitre 1 : Dénombrements et analyse combinatoire

Démonstration : Le nombre d'arrangements sans répétition de p éléments pris parmi n éléments est. An p. = n! n?p. = Pour une combinaison de p éléments 



Cardinalité des ensembles finis

10 combinaisons avec répétitions de 2 lettres choisies parmi a b



Chap. 3 : Combinatoire élémentaire.

Combinaisons sans répétition et coefficients binomiaux. 2. 2.2. Coefficients multinomiaux. 3. 2.3. Combinaisons avec répétition.



[PDF] 1Analyse Combinatoire 2Probabilités 3Variables Aléatoires 4Lois

2 2 Arrangements avec Répétitions 2 3 Arrangements sans Répétition 3 2 Permutations avec Répétitions 4 Combinaisons 4 3 Combinaison avec Remises



[PDF] Combinaisons avec répétition

Dans la note qui suit on va s'attacher `a définir rigoureu- sement une telle combinaison et `a proposer quelques démonstrations de théor`emes qui permettent de 



[PDF] Analyse combinatoire

6 mar 2008 · Démonstration : par application du principe de multiplication `a une expérience Les éléments sont pris sans répétition et sont ordonnés



Combinaison avec répétition - Wikipédia

En combinatoire — domaine mathématique des dénombrements — une combinaison avec répétition est une combinaison où donc l'ordre des éléments n'importe pas et 



[PDF] CHAPITRE 1 RAPPELS DANALYSE COMBINATOIRE I Généralités

Définition : On appelle combinaison avec répétition de éléments parmi toute disposition non ordonnée avec répétition éventuelle formée de éléments pris parmi 



Chapitre 1 — Analyse combinatoire - MathSV Lyon1

Arrangements avec répétitions Lorsqu'un objet peut être observé plusieurs fois dans un arrangement le nombre d'arrangement avec répétition de p 



[PDF] Chapitre 1 : Dénombrements et analyse combinatoire

Démonstration : Le nombre d'arrangements sans répétition de p éléments pris parmi n éléments est An p = n! n?p = Pour une combinaison de p éléments 



[PDF] COMBINATOIRE ET DÉNOMBREMENT - maths et tiques

Yvan Monka – Académie de Strasbourg – www maths-et-tiques 1 COMBINATOIRE ET DÉNOMBREMENT Tout le cours en vidéo : https://youtu be/VVY4K-OT4FI



[PDF] 1-analyse-combinatoirepdf - Permamath

3 2 Permutations avec répétition 4 Combinaisons



[PDF] Dénombrement

Remarque : On utilise les p-listes en cas de choix successifs de p éléments d'un ensemble avec éventuelles répétitions 17 1 2 Arrangements et permutations

:
Cours de Probabilités

Licence 2-S3 SI-MASS

Année 2013Cours de Probabilités

Pierre DUSART

2

Chapitre1Éléments d"analyse combinatoire

1.1 Quelques définitions

Disposition sans répétition : c"est une disposition où un élément peut apparaître 0 ou 1 fois.

Disposition avec répétition : un élément peut figurer plus d"une fois. Disposition ordonnée : l"ordre d"obtention d"un élément est important. Ex. les éléments constituant la plaque minéralogique d"un véhicule.

Disposition non-ordonnée : l"ordre d"obtention d"un élément n"est pas important, on n"en tient pas compte

dans la caractérisation de la disposition.

Ex. Les numéros issus d"un tirage du loto.

Exemple 1 : On considère un ensemble à deux élémentsfa;bg. Avec deux tirages sans répétition, on peut

obtenirfa;bgoufb;ag; Avec deux tirages avec répétition, on peut obtenirfa;ag,fa;bg,fb;agoufb;bg.

Cela correspond à un tirage avec remise.

Exemple 2 : Prenons un jeu de dé à 6 faces (éléments discernables) numérotées par =f1;2;3;4;5;6g.

Après 3 jets, nous obtenons la réalisationA= (2;5;1); nous réitérons les jets et nous obtenonsB=

(5;1;2).AetBsont équivalents si nous considérons que les dispositions sont non-ordonnées. En revanche,

ils ne sont pas équivalents si nous sommes dans le cadre d"une disposition ordonnée. La valeurFactorielle(n), notéen!est définie parn! = 12n=Qn i=1i. Par convention0! = 1. Nous pouvons également utiliser une définition récursive n! =n(n1)!

1.2 Arrangement avec répétition

Soit un ensemble composé denéléments : card( ) =n. Nous constituons un échantillonEde taillep (card(E) =p) à partir des éléments de . Si nous avons à choisirpéléments parmindans une disposition

ordonnée (les places sont distinctes) et avec répétition (on peut choisir le même élément plusieurs fois),

on dit qu"on a un arrangement depéléments parmin. Le nombre d"arrangement avec répétition estnp:

N.B. Dans ce cas, il est possible quep > n.

Réaliser un arrangement avec répétition des éléments de , c"est aussi définir une application d"un ensembleEàpéléments dans . L"ensemble des applications deEdans sera noté

Eet on a

E) = (#

)#E.

4CHAPITRE 1. ÉLÉMENTS D"ANALYSE COMBINATOIRE1.3 Arrangement sans répétition

Soit un ensemble avec card( ) =n. On constitue un échantillon de taillep(pn), la disposition est

ordonnée et sans répétition. On dit qu"on a un arrangement sans répétition depéléments parmin. Le

nombre deparrangements d"un ensemble ànéléments est : A pn=n!(np)!: Réaliser un arrangement sans répétition des éléments de , c"est déterminer unpuplet(x1;:::;xp) d"éléments de deux à deux distincts. C"est aussi définir une application injective d"un ensembleEàp

éléments dans

ànéléments.

1.4 Permutation sans répétition

C"est un arrangement sans répétition denéléments parmin. P n=Ann=n!(nn)!=n!

Réaliser une permutation des éléments de

, c"est réaliser un tirage exhaustif sans remise des éléments de en tenant compte de l"ordre du tirage. C"est aussi définir une bijection de ensemble sur lui-même.

L"ensemble des permutations d"un ensemble ànéléments s"appelle le groupe symétrique d"ordrenet se

noteSn. On a#Sn=n!.

1.5 Permutation avec répétition

On appelle permutation avec répétition depéléments oùnsont distincts (np), une disposition

ordonnée de l"ensemble de cespéléments où le premier figurep1fois, le secondp2fois, etc., tel que

p

1+p2++pn=p. Le nombre de permutation avec répétitions estp!p

1!p2!pn!

Démonstration : (Voir préalablement la définition d"une Combinaison sans répétition) Pour construire unp-uplet correspondant à une combinaison contenantp1foisx1,p2foisx2, ...,pnfois x n, il suffit : - de choisir lesp1emplacements desx1, parmip1+p2+:::+pnplaces disponibles, - de choisir lesp2emplacements desx2, parmi lesp2+:::+pnplaces restantes, - etc. - de choisir lespnemplacements desxn, parmi lespnplaces restantes.

Au total, il y a

C p1p

1+p2++pnCp2p

2++pnCpnpn=p!p

1!p2!pn!

Exemple [Nombre d"anagrammes du mot MATHÉMATIQUE] : nous voyons qu"en échangeant les deux

lettres A, le mot reste identique, et par contre en transposant les lettres É et E nous obtenons un mot

différent. (M :2;A :2;T :2;H :1;É :1;I :1;Q :1;U :1;E :1) :#Anagrammes= 12!=(2!2!2!) Exemple 2 : Nombre de quartets binaires de poids de Hamming égal à 2; Il y en a 6 =4!/(2!2!) : (0011),(0101),(0110),(1001),(1010),(1100). Cours Probabilités / Pierre DUSART51.6 Combinaison sans répétition

On considère un ensemble

constitué denéléments tous discernables. On forme un échantillon de taille

p. Si la disposition est non-ordonnée et sans répétition, on dit que l"on a une combinaison sans répétition

depéléments parmin. Le nombre de ces combinaisons se noteCpnoun p. C pn=n!p!(np)!

Propriétés :

1.C0n=Cnn= 1

2.Cpn=Cnpn(complémentaire)

3.Cpn=Cp

n1+Cp1 n1(triangle de Pascal)

4.Cpn=Ap

np!

Preuve queCpn=Cp

n1+Cp1 n1: C p n1+Cp1 n1=(n1)!p!(np1)!+(n1)!(p1)!(np)! (n1)!(np)p!(np)!+p(n1)!p!(np)! n(n1)!p!(np)!=Cpn

Proposition 1.6.1 (Formule du binôme)

(a+b)n=nX p=0C pnapbnp: Exercice : preuve de la formule du binôme par récurrence surn

Preuve :

(a+b)n+1= (a+b)(a+b)n = (a+b)nX p=0C pnapbnp nX p=0C pnap+1bnp+nX p=0C pnapbn+1p n+1X p 0=1C p01nap0bn+1p0+nX p=0C pnapbn+1p nX p=1C p1napbn+1p+Cnnan+1b0! C

0na0bn+1+nX

p=1C pnapbn+1p! =an+1+nX p=1(Cp1n+Cpn|{z} C p n+1)apbn+1p+bn+1 (a+b)n+1=n+1X p=0Cp n+1apbn+1p:

6CHAPITRE 1. ÉLÉMENTS D"ANALYSE COMBINATOIRE1.7 Combinaison avec répétition

C"est une disposition non-ordonnée depéléments, à choisir parminéléments discernables, avec répétition.

Le nombre de combinaisons avec répétitions denobjets prispàpest : K pn=Cp n+p1

Exemple : [jeu de domino] Les pièces sont constituées en disposant côte à côte deux éléments de l"ensemble

fblanc;1;2;3;4;5;6g. Si nous retournons un domino, nous changeons l"ordre des deux éléments, mais le

domino reste identique (C"est donc une disposition non-ordonnée). Nous avons une combinaison avec répétition de 2 éléments pris parmi les 7, et au total il y aK27= 28dominos dans un jeu. Toutepcombinaison avec répétition peut s"écrire : x

1:k1fois;:::;xn:knfois

avec0kipetPn i=1ki=p.

On peut ainsi mettre en bijection l"ensemble despcombinaisons avec répétition desnéléments deE

avec les applicationsf:E!Ntelles que x

17!f(x1) =k1

x n7!f(xn) =knvérifiantnX i=1f(xi) =p

Exemple : Dans un jeu de dominos, un domino est une 2-combinaison avec répétition de l"ensemble

E=fblanc;1;2;3;4;5;6g. Chaque domino peut être représenté par une application deEdansf0;1;2g

qui associe à chaque élément deEle nombre de fois où l"élément apparaît sur le domino. Ainsi le domino

[blanc,blanc], est représenté par l"applicationfdéfinie par f(blanc) = 2;f(1) = 0;f(2) = 0;f(3) = 0;f(4) = 0;f(5) = 0;f(6) = 0 et le domino [blanc, 1] par l"applicationfdéfinie par f(blanc) = 1;f(1) = 1;f(2) = 0;f(3) = 0;f(4) = 0;f(5) = 0;f(6) = 0:

On peut aussi mettre cet ensemble en bijection avec l"ensemble des manières de placerpobjets dansn

boîtes :boîte1in x 1xixn k 1kikn Mais placerpobjets dansnboîtes c"est aussi se donnern+p1objets et décider quen1d"entre eux seront des cloisons :

00|{z}

k

1j00|{z}

k

2jj00|{z}

k n:

Inversement, à toute façon de choisirn1objets qui seront des cloisons, on peut associer une et une

seule façon de placerpobjets dansnboîtes.

Il y a une bijection entre l"ensemble desp-combinaisons avec répétition de E et l"ensemble desp-uplets

croissants d"éléments deE, ou encore des applications croissantes (au sens large) def1;2;:::;pgdansE.

Propriété :Kpn=Kp1n+Kp

n1.

Preuve :Cp

n+p1=Cp1 n+p2+Cp n+p2

Chapitre2Probabilités

2.1 Espace probabilisé

2.1.1 Événement et ensemble fondamental

Une épreuve est une expérience dont l"issue n"est pas prévisible car répétée dans des conditions identiques,

elle peut donner lieu à des résultats différents ou aléatoires (expérience aléatoire). L"ensemble des résultats

possibles s"appelle l"ensemble fondamental(ou référentiel, univers des possibles) et sera noté

Unévénementest un ensemble de résultats (un sous-ensemble de l"univers) d"une expérience aléatoire.

Comme l"événement est une affirmation concernant le résultat d"une expérience, nous devons pouvoir

dire, pour tout résultat de l"univers, si l"événement se réalise ou non. Un événement donné, souvent défini

par une proposition, est identifié à la partie de l"univers pour laquelle il est réalisé.

On exige que la collectionCdes événements dispose de la structure d"une algèbre de Boole : 1.

2 C;; 2 C:

2. siA2 C;)A2 C;

3. siA;B2 C )A[B2 CetA\B2 C:

On peut préciser le calcul de probabilités d"un événementE. De manière simplifiée, la probabilité théorique

vaut

P(E) =nombre de cas favorablesnombre total de cas

Exemple 1 : Si on lance un dé à 6 faces, le référentiel est composé des six faces =f1;2;3;4;5;6g:

Exemple 2 : Si on lance trois fois une pièce, le référentiel est composé des23arrangements avec répétition

des 2 faces distinctes notéesPetF: =fPPP;PPF;PFP;PFF;FPP;FPF;FFP;FFFg:

Exemple 3 : Si on lance trois pièces identiques simultanément, le référentiel est composé des 3-combinaisons

avec répétition des 2 faces distinctes notéesPetF: =fPPP;PPF;FFP;FFFg:de cardinalK32.

Question : "On lance trois pièces de monnaie. Quelle est la probabilité que toutes trois retombent du

même côté, que ce soit pile ou face?"

Définition 1Deux événementsAetBsont dits incompatibles s"ils ne peuvent se réaliser simultanément

c"est-à-dire lorsque l"intersection des sous-ensemblesAetBest vide :A\B=;.

8CHAPITRE 2. PROBABILITÉS2.1.2 Axiomatique de Kolmogorov

A chaque événement, on associe un nombre positif compris entre 0 et 1, sa probabilité. La théorie moderne des probabilités repose sur l"axiomatique suivante :

Définition 2On appelle probabilité sur(

;C)(où est l"ensemble des événements etCune classe de parties de ), ou loi de probabilité, une applicationPdeCdans[0;1]telle que :

1. Pour tout événementE,0P(E)1.

2.P( ) = 1

3. pour tout ensemble dénombrable d"événements incompatiblesA1;A2;:::;An, on a

P([Ai) =XP(Ai):(-additivité deP)

Définition 3On appelle espace probabilisé le triplé( ;C;P)où est l"ensemble fondamental,Cest une collection de sous-ensembles de (la collection des événements), qui possède la structure précédente de -algèbre de Boole etP:C ![0;1]est une mesure de probabilité surC.

Propriétés élémentaires : de l"axiomatique de Kolmogorov, on peut déduire les propriétés suivantes :

1.P(;) = 0

2.P(A) = 1P(A)

3.P(A[B) =P(A) +P(B)P(A\B)

4.P(A)P(B)siAB(inégalité de Boole)

5.P([iAi)P

iP(Ai)(Il n"y a stricte égalité que si les événementsAisont deux à deux incompatibles.)

6. Si la suite(An)croît versA(c"est-à-dire8n;AnAn+1et[An=A) alorslimP(An) =P(A).

7. Continuité monotone séquentielle. SoientA1A2 An ;. Silimn!1An=;alors

lim n!1P(An) = 0

Démonstration :

1. SoitEun événement quelconque. CommeE[ ;=E,P(E[ ;) =P(E). D"autre part, on sait

queE\ ;=;(tout événement est incompatible avec l"événement impossible) et d"après le 3ème

axiome,P(E[ ;) =P(E) +P(;). Des deux égalités, on obtientP(;) = 0.

2.A[A=

etA\A=;P( ) =P(A[A) =P(A) +P(A) = 1d"oùP(A) = 1P(A)

3. On découpe selon une partition deA[B: on aP(A[B) =P(A\B)[(B\A)[(A\B). Ces

ensembles sont deux à deux incompatibles d"oùP(A[B) =P(A\B)+P(B\A)+P(A\B). De plus, P(A) =P(A\B)+P(A\B)etP(B) =P(B\A)+P(A\B), d"oùP(A\B) =P(A)P(A\B) etP(B\A) =P(B)P(A\B), valeurs que l"on remplace dans la première égalité obtenue.

4. D"après la propriété précédente et la positivité de la probabilité, on aP(A[B) =P(A) +P(B)

P(A\B)P(A) +P(B),

5. Formule précédente que l"on peut généraliser à un nombre quelconque d"événements :P([iAi)P

iP(Ai)avec égalité si des événements sont deux à deux incompatibles.

6. On poseB1=A1et8n2;Bn=AnnAn1. LesBisont disjoints et vérifient[n1Bn=[n1An

et8n1;[nk=1Bk=An:Par la propriété de-additivité,P n1P(Bn) =P([n1An)et8n 1;Pn k=1P(Bk) =P(An):Ainsilimn!1P(An) =P([nAn) =P(A).

7. On noteA=\An. CommeAnAn+1,A

n nA n+1. On poseB1=A

1etBn+1=A

n+1nA n. Ainsi nBn=[nA n=Aet[nk=1Bk=A n. Ainsilimn!1P(A n) = limnP([Bk) =P(A). En passage au complémentaire,limn!1P(An) =P(A). On peut prendreA=;.

Cours Probabilités / Pierre DUSART9Théorème 2.1.1 (Théorème des probabilités totales)Soit

=[Biun système complet d"événe- ments (i.e. tel que lesfBigconstituent une partition de ). Alors

8A:P(A) =X

iP(A\Bi):

Exemples de construction :

1. Si =fx1;:::;xngest fini, on définit une probabilité surP( )en se donnantnnombrespitels quePquotesdbs_dbs28.pdfusesText_34
[PDF] les fenetres baudelaire pdf

[PDF] dictionnaire synonyme pdf

[PDF] un lancé de dé orthographe

[PDF] simulation d'un lancer de dé

[PDF] que veut dire si d'aventure

[PDF] partir ? l'aventure définition

[PDF] si d'aventure conjugaison

[PDF] si d'aventure en aventure

[PDF] averroes livre pdf

[PDF] l'incohérence des philosophes pdf

[PDF] l incohérence de l incohérence averroes

[PDF] averroes livre discours décisif

[PDF] tahafut al tahafut pdf

[PDF] l'incohérence de l'incohérence averroes

[PDF] tahafut al-falasifa pdf