[PDF] Exercices corrigés D'où le résultat.





Previous PDF Next PDF



TD no 3 : Fonctions dune variable réelle

Montrer que l'application x ? cos(x) n'admet pas de limite en +?. Exercice 3.2. Soient I un intervalle de R f une fonction de I dans R



Exercice I - étude dune fonction réelle de variable réelle

Module M131 : fonctions d'une variable réelle Solution de l'exercice I ... Exercice III - calcul de limites avec DLs et/ou règle de L'Hôpital.



Généralités sur les fonctions numériques dune variable réelle

Plan du Cours. 1. Fonction numériques d'une variable réelle a) Définitions notions de limites et continuité b) Fonctions inverses ou réciproques.



Fonctions réelles dune variable réelle

Exercice. 8. Continuité d'une fonction. 8. Évaluation formative. 16. A. Limite d'une fonction. Une partie est un voisinage de.



Cours danalyse 1 Licence 1er semestre

4 Fonctions d'une variable réelle. 39. 4.1 Limite et continuité . Merci `a Michele Bolognesi pour la rédaction de quelques corrigés d'exercices.



Fonctions réelles dune variable réelle dérivables

Interprétez géométriquement. Correction ?. [005409]. Exercice 4 **. Soit f une fonction convexe sur un intervalle 



ANALYSE

QCM et exercices corrigés d'exercice identique (« Vous avez compris ? ... caractérisations d'une fonction numérique d'une variable réelle.





Exercices corrigés

D'où le résultat. EXERCICE 1.6.– [Fubini ne marche pas toujours]. Soit la fonction à deux variables définie par f (x y) 



Fonctions réelles dune variable réelle

Fonctions réelles d'une variable réelle. MR LATELI AHCENE septembre 2018 Exercice. 6. Fonctions monotones. 6. Fonction paire impaire.



[PDF] TD no 3 : Fonctions dune variable réelle

L1 Parcours Spécial Mathématiques TD no 3 : Fonctions d'une variable réelle Limites Exercice 3 1 1 Soit x0 ? R Montrer que x ????? x?x0



[PDF] Exercice I - Gloria FACCANONI - Université de Toulon

Aucune information n'est disponible pour cette page · Découvrir pourquoi



[PDF] Fonctions réelles dune variable réelle dérivables - Exo7

Fonctions réelles d'une variable réelle dérivables (exclu études de fonctions) Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur 



[PDF] Fonctions réelles dune variable réelle

Mr LATELI Ahcene Fonctions réelles d'une variable réelle Octobre 2018 Exercice 8 Continuité d'une fonction 8 Évaluation formative



[PDF] Exercices : Fonctions dune variable réelle - Normale Sup

Étudier la dérivabilité de f la continuité de f Exercice 6 Domaine de définition et dérivée des fonctions suivantes : 1) f(t) = Arcsin (2t



[PDF] Chapitre 2 : Fonctions dune variable réelle

Définition Une fonction d'une variable réelle c'est la donnée de trois choses : 1 un ensemble de départ E ; 2 un ensemble d'arrivée F ;



[PDF] fonctions numeriques d?une variable reelle

FONCTIONS NUMERIQUES D?UNE VARIABLE REELLE EXERCICES 7B EXERCICE 7B 1 Construire dans chaque cas une courbe qui correspondrait à ce tableau de variation 



[PDF] TRAVAUX DIRIGÉS N°1 - MATHÉMATIQUES

Etude de fonctions rationnelles Exercice 1 Etude d'une fonction polynôme du 2nd degré Soit la fonction de la variable réelle définie sur l'intervalle 

:

Exercices corrigés

Dominique Pastor & Christophe Sintes

Version - 1 (Mai 2014)

Table des matières

1 Aléatoire et formalisme 3

2 Variables aléatoires et moments 17

3 Aléatoire multivarié 29

1

Introduction

Le lecteur trouvera ici les énoncés et corrigés des exercices proposés dans "Probabilités pour l"ingénieur, des fondements aux calculs" Certains des énoncés ci-dessous ont été modifiés par rapport à ceux de l"ouvrage Nous conseillons au lecteur de consulter ce livret d"énoncés et de corrigés régu- lièrement car nous proposerons de nouveaux exercices. Nous envisageons notam- ment quelques exercices ou problèmes où les calculs seront suivis de programma- tions Matlab permettant de vérifier la validité des résultats trouvés par le lecteur. Que les lecteurs intéressés n"hésitent pas à nous contacter pour nous faire part de leurs suggestions aux adresses électroniques :

Dominique.Pastor@telecom-bretagne.eu

et

Christophe.Sintes@telecom-bretagne.eu

Nous suggérons à nos éventuels correspondants de débuter le sujet de leur cour- riel par l"abbréviation PP I (p robabilitésp ourl "ingénieur),c eq uinous p ermettrade mieux identifier la nature de leur courriel. 1

Chapitre 1

Aléatoire et formalisme

EXERCICE1.1.-[Convergences monotone et dominée] nmériques positives ou nulles, sans préciser la fonction vers laquelle cette suite surables positives ou nulles, alors la limite de la suite (fn(x))n2Nexiste dansj0,1] pour toutx2R. Les notions de mesurabilité et d"intégrale s"étendent sans réelle dif- ficulté au cas des fonctions positives ou nulles à valeurs dans [0,1]. La conclusion du théorème de convergence monotone est alors inchangée :fAElimnfnest mesu- rable et : lim kZ R fkd¸AEZ R fd¸ Il faut utiliser cet énoncé plus général de la convergence monotone pour répondre aux questions suivantes. 1. S oit( gn)n2Nune suite d"applications numériques mesurables à valeurs dans [0,1[. Montrer queZ R1 X nAE1g n(x)dxAE1X nAE1Z R gn(x)dx. 2. S oit(fn)n2Nunesuited"applicationsnumériquesmesurables.Onsupposeque 1X nAE1Z R jfn(x)jdxÇ1. On poseÁ(x)AE1X nAE1jfn(x)j2[0,1] pour toutx2R. (a)

M ontrerq ue

Z R

Á(x)dxÇ1.

(b) E na dmettantque toute ap plicationint égrableest finie p resquep artout, déduire de la question précédente que 1X nAE1f n(x) converge pour presque tout réelxet queR

Rjf(x)jdxÇ 1avecf(x)AE1X

nAE1f n(x) en tout pointx 3

4PROBABILITÉS POUR L"INGÉNIEUR

où cette série converge etf(x)AE0 (par exemple) enxoù la sériePfn diverge. (c)

M ontrerqu eZ

R f(x)dxAE1X nAE1Z R fn(x)dx. Ce résultat est [RUD 87, Theo- rem 1.38, p. 29] dans le cas réel.

Solution

que somme finie d"applications mesurables. De plus, pour toutN2N,GNÊ0. Nous NR

RGN(x)dxAER

RlimNGN(x)dx. D"où le résultat, car :

Z R

GN(x)dxAENX

nAE1Z R gn(x)dx et lim NZ R

GN(x)dxAE1X

nAE1Z R gn(x)dx

2a) Par application de la question précédente, nous avons :

Z R

Á(x)dxAE1X

nAE1Z R jf(x)jdxÇ1

2b) Comme

R RÁ(x)dxÇ1,Áest finie presque partout. Il s"ensuit que pour presque toutx, la sériePfn(x) est absolument convergente et donc convergente. En tout pointxoù cette série est absolument convergente,jf(x)j ÉÁ(x) et pour tout réel xoù la sériePfn(x) diverge,f(x)AE0. CommeÁest intégrable,fest elle-aussi in- tégrable. Il suffit même de dire quefest majorée presque partout par la fonction intégrableÁ- sans même avoir à préciser une quelconque valeur pourflà où elle n"est pas majorée parÁ- pour garantir quefest intégrable.

3) Nous avonsjPNnAE1fnj ÉÁet limnPNnAE1fnAEf(presque partout). Nous sommes

donc dans les conditions de la convergence dominée dans un cas plus général que que partout au lieu d"une convergence partout. Mais cela ne change en rien les que partout dans les énoncés de la convergence montone et dominée sans que cela de la convergence dominée. Le lecteur attentif le remarquera peut-être : nous n"avons en fait pas besoin de

la question précédente pour garantir l"intégrabilité defcar cette intégrabilité est

directement garantie par la convergence dominée! Les 3 exercices suivants sont des adaptations d"énoncés que le lecteur trouvera dans [KHA 94].

EXERCICES PARTIE I5

EXERCICE1.2.-[Application de la convergence dominée] SoientaÈ1, un borélienAinclus dans [0,1[ et une application numériquefinté- grable surA:Z A jf(x)jdxÇ1. Montrer que limnZ

Anxf(x)1ÅnaxadxAE0.

Indication :justifier et utiliser le fait que, pour toutx2[0,1[,x·xaÅ1.

Solution

Six2[0,1], on axÉ1É1ÅxacarxaÊ0. SixÈ1,xÇxaÇxaÅ1. Donc, pour tout x2[0,1[,x·xaÅ1. Nous déduisons de cette inégalité quenxn axaÅ1É1. Aussi, nous

avons l"inégalité :j1A(x)nxf(x)1Ånaxaj AE1A(x)nxjf(x)j1ÅnaxaÉ jf(x)jpuisqueA½[0,1[. Comme

fest intégrable, la suite de fonctions (fn)n2Navecfn(x)AE1A(x)nxf(x)1Ånaxaest dominée par la fonction intégrablef. De plus, pour toutx2R, limn1A(x)nxf(x)1ÅnaxaAE0. D"où le résultat par application de la convergence dominée. EXERCICE1.3.-[Application de la convergence dominée]

Soita2]0,1[,

1. M ontrerqu ee¡xxa¡1est intégrable sur [0,1[; 2.

M ontrerqu e1 ÅxÉexpour toutx2R;

3.

M ontrerqu epour t outx2[0,1[, limn¡1¡xn

nAEe¡x; 4.

E ndéduir equ eli m

nZ n 0³

1¡xn

nxa¡1dxAEZ 1 0 e¡xxa¡1dx.

Solution

1) Soitf(x)AEe¡xxa¡1définie pour toutx2]0,1[. Commef(x)Ê0 pour toutx2

]0,1[, la valeur de l"intégraleR1

0f(x)dxexiste dans [0,1]. On cherche à montrer

que cette intégrale est en fait finie.

Commee¡xÉxa¡1, nous avons :

f(x)1]0,1](x)Éxa¡11]0,1](x) PourxÊ1, on axa¡1É1. Nous avons donc aussi : f(x)1[1,1](x)Ée¡x1[1,1](x)

Il s"ensuit que :

Z 1 0 f(x)dx)AEZ 1 0 f(x)dxÅZ 1 1 f(x)dxÉZ 1 0 xa¡1dxÅZ 1 1 e¡xdx(1.1) Le second terme du membre de droite dans l"inégalité précédente est évidemment fini en raison des propriétés de l"exponentielle. On peut même préciser la valeur de

6PROBABILITÉS POUR L"INGÉNIEUR

ce terme puisqu"une primitive dee¡xest¡e¡x. On a doncR1

1e¡xdxAE[¡e¡x]11AE1.

La première intégrale du membre de droite dans l"inégalité (1.1) est elle-aussi fi- nie. Pour le montrer, on peut utiliser la proposition 4.15 du livre. À titre d"exemple, nous allons faire ici une démonstration spécifique au cas considéré dans cet exer- cice, sans passer par cette proposition, afin que le lecteur s"exerce à l"emploi de applicationsgn(x)AExa¡11[1/n,1](x) pourx2]0,1]. Pour toutx2]0,1], cette suite est croissante et limngn(x)AExa¡11]0,1](x). Par application de la convergence monotone, Z 1 0 xa¡1dxAElimnZ 1

1/nxa¡1dx(1.2)

L"application qui associexa¡1à toutx2[1/n,1] est continue et bornée sur [1/n,1]. Elle est donc intégrable sur [1/n,1]. D"autre part, une primitive dexa¡1est (1/a)xa.

Nous obtenons donc :

Z 1

1/nxa¡1dxAE·1a

xa¸1

1/nAE1a

1¡1n

En reportant ce résultat dans (1.2) , nous obtenons : Z 1 0 xa¡1dxAElimn1a

1¡1n

AE1a (1.3)

On a donc :

Z1 0 f(x)dxÉ1a

Å1 (1.4)

ce qui garantit l"intégrabilité def. Avec un peu d"habitude, on peut aller beaucoup plus vite en passant vite sur les détails que nous venons de donner. Mais nous avons voulu donner ces détails pour montrer comment les différents résultats de la théorie s"articulent pour établir l"intégrabilité de la fonction considérée.

2) Il y a plusieurs façons de procéder. La plus simple est de faire un dessin. Si l"on

veut absolument faire des calculs, une solution classique consiste à considérer la fonctionh(x)AEex¡x¡1 définie pour tout réelxet à étudier le sens de variation de h. On ah0(x)AEex¡1Ê0 pourxÊ0. On en déduit quehest croissante sur [0,1[. cela implique queh(x)Êh(0) pour toutxÊ0 et commeh(0)AE0, nous obtenons le résultat voulu.

3) Nous avons³

1¡xn

nAEenln¡1¡xn . Pournassez grand, nous pouvons écrire : ln

1¡xn

AE¡xn

Åxn

"³xn avec lim t!0"(t)AE0. On a donc :³

1¡xn

nAEe¡xÅx"(x/n), d"où le résultat.

EXERCICES PARTIE I7

f n(x)AE³

1¡xn

nxa¡11]0,n](x)

Par la question 2, 1¡xn

Ée¡x/npourxÊ0. Donc, pourxÉn,¡1¡xn nÉe¡x. On a simplement versh. Nous sommes dans les conditions d"applications du théorème de la convergence dominée. D"où le résultat. EXERCICE1.4.-[Une autre application de la convergence dominée] 1.

P ourquoil"intégralecnAER

on écrire que :cnAE2R1

0gn(x)dx?

2. a) Montrer que pour tout réelx:¡1Åx2/n¢(nÅ1)/2Ê1Åx2/2. b) Montrer que l"applicationx2R7¡!11Åx2/2est intégrable. 3. O nv eutcalcul erla li mitede cnlorsquentend vers l"infini. a) Montrer que lim ngn(x)AEe¡x2/2;

Solution

1) La valeur de l"intégralecnAEZ

R gn(x)dxexiste dans [0,1[ cargnÊ0 et est mesu- rable. Commegnest paire, on acnAE2Z 1 0 gn(x)dx.

2a) On posefn(t)AE(1Åtn

)nÅ12

¡1¡t2

,tÊ0 f

0n(t)AEnÅ12nµ

1Åtn

n¡12

¡12

AE12 nÅ1n

1Åtn

n¡12

¡1!

CommenÊ1 ettÊ0, on a (1Åtn

)n¡12

Ê1, ce qui implique quenÅ1n

(1Åtn )n¡12

¡1Ê0.

Doncf0n(t)Ê0 pourt2[0,1[ etfnest croissante sur [0,1[. Commefn(0)AE0, on a f n(t)Êf(0)AE0, ce qui implique le résultat.

2b) On a :

Z1

011Åx22

dxAEZ 1

011Åx22

dxÅZ 1

111Åx22

dx

8PROBABILITÉS POUR L"INGÉNIEUR

L"intégrale

Z 1

011Åx22

dxest finie carx7!11Åx22 est définie et continue sur [0,1].

PourxÊ1,11Åx22

Ê2x

2. OrZ

1 11x

2dxAE·

¡1x

1 1

AE1. DoncZ

1

111Åx22

dxÇ 1. On a donc : Z1

011Åx22

dxÇ1

Commex7!11Åx22

est paire, il s"ensuit que : Z

R11Åx22

dxÇ1

2c)gn(x)AE(1Åx2n

)¡nÅ12

É11Åx22

et l"applicationx7!11Åx22 est intégrable sur [0,1[. Donc Z 1 0 gn(x)dxÉ1etcnest fini aussi.

3a) lngn(x)AE¡nÅ12

lnµ

1Åx2n

donc lim nlngn(x)AE¡x22 car ln

1Åx2n

AEx2n

Åx2n

oµx2n

On en déduit que lim

ngn(x)AEe¡x2/2pour toutx2R.quotesdbs_dbs41.pdfusesText_41
[PDF] images sequentielles cm2

[PDF] écrire ? partir d'images cm1

[PDF] planche no 22. fonctions de plusieurs variables.

[PDF] colin muset sire cuens paroles

[PDF] sir cuens j'ai viélé colin muset

[PDF] générateur de nom d'entreprise

[PDF] savoir si nom entreprise existe

[PDF] citer une exposition

[PDF] contrat d'exposition galerie

[PDF] contrat d'exposition exemple

[PDF] citer catalogue d'exposition

[PDF] exemple contrat exposition

[PDF] droit d exposition

[PDF] convention exposition photo

[PDF] contrat artiste plasticien