[PDF] [PDF] Electromagnétisme A Particule chargée dans un champ électrique





Previous PDF Next PDF



L2 - Corrigé de lexercice 1 du TD N 4

L2 - Corrigé de l'exercice 1 du TD N. ◦. 4. Vendredi 2 mars 2007. Exercice 1 : Force de Lorentz. Un proton (q = 1.60 10−19 C m = 1.67 10−27 kg) se 



Force de Lorentz

Corrigés en TD : Oscilloscope spectrographe de masse



MPSI-PCSI-PTSI

Régime sinusoïdal forcé 125 – Exercices 126 – Corrigés 130. Chapitre 8 Force de Lorentz et champ électromagnétique 213 – 2. Mouvement d'une particule.



Electromagnétisme A Particule chargée dans un champ électrique

Une particule de charge q mobile de vitesse v



Mouvement des particules chargées dans un champ

Exercices. Exercice 1 : Sélecteur de vitesse. 1 La particule est soumise uniquement à la force de Lorentz. Le vecteur vitesse de la particule reste inchangé 



218 exercices corrigés Mécanique (98 exercices corrigés

force de frottement gardent la même valeur qu'au début. a)) Déterminer la ... Lorentz = Λ ⃗ =





Corrigé pour les exercices en séance de TD 9

8 avr. 2020 (a) La nouvelle force subie par l'électron est la partie magnétique dans la force de Lorentz. −e v × B



TRAVAUX DIRIGÉS DE RELATIVITÉ RESTREINTE

On vérifiera la nature covariante de la force de Lorentz. 5 Courant dans un fil ⋆ Examen 2015/2016 : exercice B (Force entre deux faisceaux non corrigé).



Introduction à lElectromagnétisme

3 sept. 2022 11.7 Exercices d'analyse vectorielle . ... On appelle cette force la force de Lorentz. On peut la mettre sous ...



Parany-corrigé CAPEN

force magnétique ou une force de Lorentz. = q Λ . Donc la tige est soumise à un ensemble de forces réparties dont la résultante est appelée force de Laplace. L.



Force de Lorentz

Corrigés en TD : Oscilloscope spectrographe de masse



Mouvement des particules chargées dans un champ

Exercices. Exercice 1 : Sélecteur de vitesse. 1 La particule est soumise uniquement à la force de Lorentz. Le vecteur vitesse de la particule reste inchangé 



L2 - Corrigé de lexercice 1 du TD N 4

L2 - Corrigé de l'exercice 1 du TD N. ?. 4. Vendredi 2 mars 2007. Exercice 1 : Force de Lorentz. Un proton (q = 1.60 10?19 C m = 1.67 10?27 kg) se 



Electromagnétisme A Particule chargée dans un champ électrique

Une particule de charge q mobile de vitesse v



MPSI-PCSI-PTSI

Régime sinusoïdal forcé 125 – Exercices 126 – Corrigés 130. Chapitre 8. Filtrage linéaire . Force de Lorentz et champ électromagnétique 213 – 2.



Chapitre 2 : Force de Lorentz. Force de Laplace

2 Force de Lorentz. Force de Laplace. 12 c) Interprétations. 1. En absence d'un champ B. il n'y a pas de forces s'exerçant sur les électrons. (Le poids.



Exercices corrigés

Exercice 1: mouvement des particules chargées force de Lorentz. On accélère un électron de masse m et charge -e



FORCES ÉLECTROMAGNÉTIQUES - corrigé des exercices A

A. EXERCICES DE BASE. I. Fréquence cyclotron. 1. Méthode analytique. • La force de Lorentz peut s?écrire : F = qv ?B = qB.[y• ux - x• uy ] et la relation 



AD1 Stern

(a) Pourquoi les atomes d'argent ne subissent-il pas de force de Lorentz? 1. Expérience de STERN et GERLACHI. (b) Expliquer la nécessité d'un champ 



Electromagnétisme : PEIP 2 Polytech

9.1.1 La force de Lorentz . 11.7 Exercices d'analyse vectorielle . ... On voit ici qu'il faut corriger la loi de Coulomb qui nous aurait donné le champ.



[PDF] Force de Lorentz - cpge paradise

Corrigés en TD : Oscilloscope spectrographe de masse réflectron champs électro- magnétiques et trajectoires Champ électrostatique Exercice 1 





[PDF] Mouvement des particules chargées dans un champ

Exercices Exercice 1 : Sélecteur de vitesse 1 La particule est soumise uniquement à la force de Lorentz Le vecteur vitesse de la particule reste inchangé 



[PDF] L2 - Corrigé de lexercice 1 du TD N 4

2 mar 2007 · D'apr`es la formule de la force de Lorentz ?? FB = q??v ? ?? B la force sera toujours perpendiculaire `a la vitesse donc pas de 



[PDF] MPSI-PCSI-PTSI

Régime sinusoïdal forcé 125 – Exercices 126 – Corrigés 130 Chapitre 8 Filtrage linéaire Force de Lorentz et champ électromagnétique 213 – 2



Forces de Lorentz et Laplace Exercices supplémentaires 1) 2) Dans

Forces de Lorentz et Laplace Exercices supplémentaires 1) 2) Dans un accélérateur de particule des ions He2+ de masse m=664 10-27 kg 



[PDF] FORCES ÉLECTROMAGNÉTIQUES - Jean-Michel Laffaille

FORCES ÉLECTROMAGNÉTIQUES - corrigé des exercices A EXERCICES DE BASE I Fréquence cyclotron 1 Méthode analytique • La force de Lorentz peut s?écrire 



[PDF] Mouvements sous laction de la force de Lorentz ( )

a) Exprimer les coordonnées de la force à laquelle est soumis l'électron 1 b) Quelle est la position d'équilibre de l'électron ? 2) On appelle désormais 



[PDF] CORRIG´ES DES EXERCICES DELECTROMAGN´ETISME

aux exercices III IV et V en utilisant le théor`eme de Gauss sous sa forme locale 1?) Exercice III 4?) En régime permanent la force de Lorentz



[PDF] Electromagnétisme A Particule chargée dans un champ électrique

Une particule de charge q mobile de vitesse v plongée dans un champ électrique E et dans un champ magnétique B subit la force de Lorentz: F = q (E + v ? B)

:

Electromagnétisme A

Particule chargée dans un champ électrique et dans un champ magnétique

Sommaire

Force de Lorentz

Travail, puissance de la force de Lorentz et énergie mécanique

Application: le canon à électrons

Equations horaires du mouvement d"une charge dans un champ électrique constant Applications: écran cathodique, expérience de Millikan de quantification de la charge Particule chargée dans un champ magnétique: pulsation et rayon de giration Applications: effet miroir, séparation isotopique, chambre à bulles, cyclotron, synchrotron Equations horaires du mouvement d"une charge dans un champ magnétique constant

Application: guidage des particules en mouvement

Oscillateur harmonique dans un champ magnétique: effet Zeeman Oscillateur harmonique excité par une onde électromagnétique: profil d"amortissement en fréquence, raies spectrales I - Force de Lorentz subie par une charge dans un champ électrique et dans un champ magnétique Une particule de charge q mobile, de vitesse v, plongée dans un champ électrique Eet dans un

champ magnétique B, subit la force de Lorentz:F= q (E+ vLB)Permet de définir la nature du champ électrique Eet du champ magnétique Bpar leur action sur

une charge q q E= force électrique , colinéaire au champ électrique (opposée ou même sens selon signe de q). q vLB= force magnétique , orthogonale à la fois à la vitesse vet au champ magnétique B.

Rappel sur le produit vectoriel:

||vLB|| = v B |sin(v,B)|

Si v= 0ou si v// B, pas de force magnétiqueUnités: Fen N, Een V/m; Ben T; q en C; ven m/s.

Rappel: charge élémentaire

e = 1.6 10 -19

C; proton: charge +e, électron: charge -e.

Dans tout le cours, les vecteurssont en caractères gras vLBorthogonal au plan (v, B) Règle de la main droitevers vous opposé II - Travail de la force de Lorentz et énergie mécanique Le travail élémentaire d"une force Fappliquée en M est le produit scalaire dW= F.dOM(unité: Joule) oùdOMest un déplacement élémentaire La puissance de la force Fest P= dW/dt = F.v avec v= dOM/dt (vecteur vitesse)

F.v= q (E+ vLB).v

comme(vLB).vest un produit mixte nul (vorthogonal àvLB), alors La force magnétique ne travaille pas; seule la force électrique travaille

La puissance de la force de Lorentz est

P= q E.v

(unité: W) vB vLB Bv vLB pouceindex majeurpouce index majeur Si m désigne la masse de la particule, le PFD implique: m dv/dt = q E+ q (vLB) Effectuons le produit scalaire avec v: d(½ m v²)/dt = q E.v

Si Edérive du potentiel électrostatique V

(unité: Volt), on a E= -grad(V) or dV= grad(V).dOM (par définition) d"où dV/dt = -E.v

Donc la quantité E

m= ½ m v² + q V est conservée

C"est l"énergie mécanique

de la particule chargée. E c= ½ m v²est l"énergie cinétique et E p= q V est l"énergie potentielle (unité: Joule).

Remarque: en présence de frottements, E

mn"est plus conservée et diminue.

Application: le canon à électrons (accélération)Métal chauffé(cathode temp T) potentiel

V = 0

Vitesse

d"émission thermique des

électrons

v0

Émission

d"électrons

Potentiel

V > 0

Vitesse des

électrons

v à déterminer

½ mv² - e V = ½ mv

0² + 0 = constante

Comme v0<< v v = (2 e V / m) 1/2

V = 10 000 V

v = 0.2 C

½ mv

0² = 3/2 k T (k constante de Boltzman) v

0= (3 k T / m)

1/2

T = 1000 K v

0= 0.0007 C

v0<< C

Accélération

E III - Mouvement d"une particule chargée dans un champ électrique constant

La particule de charge q et de masse m est soumise à la seule force électrique F= q E, oùEest

invariable dans l"espace et dans le temps

Le PFD s"écrit:

m d²OM/dt² = m dv/dt = F= q E

L"accélération est

q E / m ce qui s"intègre vectoriellement et donne les équations horaires v(t) = dOM/dt = (q E / m) t+ v 0 oùv

0est la vitesse initiale

de la charge.

OM(t) = (½ q E / m) t²+ v

0t + OM

0 où M

0est la position initiale

de la charge. Conclusion: le champ électrique accélère ou ralentit une charge dans son mouvement (dépend du sens de la force q Epar rapport àv 0) v0

F = qE

mouvement accéléré

F = qE

mouvement ralenti Exemple:la charge a pour coordonnées [x(t), y(t)] et pour vitesse [v x(t), v y(t)] dans le repère (xOy); en t=0, elle est au point O et possède la vitesse initiale v 0[v

0cos(α), v

0 sin(α)]

vx(t) = v

0cos(α) mouvement à vitesse constante

selon Ox v y(t) = (q E /m) t + v

0 sin(α) mouvement accéléré ou ralenti

selon Oy x(t) = v

0cos(α) t

y(t) = (½ q E / m) t² + v

0sin(α) t

équation de la trajectoire:

y = (½ q E / m) (x / v

0 cos(α))² + x tan(α)

Il s"agit d"une parabole. Si α= 0 (Eorthogonal àv

0), y = (½ q E / m v

0² ) x²

Application1 : oscilloscope à écran cathodique

Eest créé par des plaques parallèles

distantes de d, de longueur l et de différence de potentiel U x = (½ q E x/ m v

0²) l² où E

x= U x/d y = (½ q E y/ m v

0²) l² où E

y= U y/d x, y proportionnels àU x, U y

Ci contre: variété de courbes de

Lissajous obtenues en appliquant

aux plaques de déflexion x et y les tension U x= cos(p t)

Uy=sin(q t)

Pour p, q entiers (p = q donne un

cercle)

Plaques de déflexion

E x E yl l Application 2: expérience de Millikan sur la quantification de la charge mgq E V>0 E

V=0Goutte sphérique d"huile

rayon r, densitér charge q < 0 -6phr v

PFD: m dv/dt = (4/3pr

3r) g - 6phr v +q E = 0 à l"équilibre poids force de frottement force électrique

E = -Ee

z

6phr v = (4/3 pr

3 r) g + q E

v z= -(1/6phr ) (4/3 pr

3 rg+ q E)

1)

E = V/d = 0

la mesure de v zdonne le rayon r de la goutte

2) On fixe E = V/d tel que

vz= 0 q = - 4/3 pr

3 rg / E

Résultat: on trouve statistiquement que la charge q est multiple d"une même quantité, la charge de l"électron - e = - 1.6 10 -19 C v d liquide visqueux z IV - Mouvement d"une particule chargée dans un champ magnétique; pulsation gyromagnétique et rayon de giration

Le PFD s"écrit:

m dv/dt = q vLB Le produit scalaire avec vdonne d(½ m v²) /dt = 0.

L"énergie cinétique de la particule est constante. La norme ||v|| du vecteur vitesse est invariable.Supposons Binvariable dans le temps.

Considérons dérivée du produit scalaire v.Bpar rapport au temps: d(v.B)/dt = dv/dt . B= q/m (vLB) . B = 0 puisque vLB etB sont orthogonaux. On en déduit que le produit scalaire v.Best invariable dans le temps .v B vLB orthogonal au plan(v, B)

Posons:

v = v //+ v v//dans la direction du champ magnétique v┴dans le plan orthogonal au champ Conséquence pour un champ magnétique uniforme et constant v//B = constante v// = constante v² = v //² + v ┴² = constante v┴= constante Si v //= 0 alors m v ┴²/ R = q v ┴B v ┴= ΩR

Le mouvement est plan et circulaire

de rayon de courbure

R = |v

La quantitéΩ=|q B / m| porte le nom de pulsation gyromagnétique

C"est une vitesse angulaire

(unité: rd/s) de rotation dans un plan orthogonal au champ B. Si v //est non nul

Le mouvement est une hélice de rayon R

dont l"axe est la direction du champ magnétique; son pas est h = v //T = v //(2π/Ω); la vitesse de dérive sur l"axe de l"hélice est v Conclusion: les charges sont déviées et guidées par un champ magnétique. L"énergie cinétique de la particule ne varie pas. B v// v┴h

Applications: 1 - le phénomène de piégeage de charges par miroir magnétique dans la couronne solaire

A la surface du Soleil, le phénomène de miroir magnétique se produit lorsqu"une particule chargée se déplace d"une zone de champ magnétique B faible (sommet d"une arche magnétique) vers ses pieds d"ancrage où B est fort . La vitesse de dérive v //, maximale au sommet de l"arche, diminue vers ses pieds, peut s"annuler et s"inverser.

2 - séparation isotopique

par un champ magnétique

Pour q, B, v

0donnée,

R proportionnel à la masse m

(les isotopes diffèrent par le nombre de neutrons) m 1 m 2

B faible

B fortB v// = cte

R = m |v

0/ q B|

B fort

3 - la chambre à bulles en physique des particulesPFD: m dv/dt = q (vLB) - k v

Vitesse initialev

0selon Oy

Trajectoire incurvée en présence

de champ magnétique

Mouvement freiné par le fluide,

frottement - k v avec formation de bulles sur la trajectoire par vaporisation (la puissance dissipée - k v² provoque le changement d'état)

Mesure de la vitesse initiale v

0 et de la charge q q fort ou m faible (électrons)q faible ou m fort (noyaux)v0 Ω=|q B / m| (B donné) fluide

Chambre de Wilson du

laboratoire Leprince Ringuet des rayons cosmiques (gerbes de particules secondaires issues de collisions entre particules galactiques et l"atmosphère).

Col du Midi à 3600 m d"altitude

(massif du Mont Blanc) Ω=|q B / m|les trajectoires sont d"autant plus incurvées que la masse m est petite et la charge q grande à B donné

4 - cyclotron/synchrotron: accélérateur de particules

Accélération

par un champ

électrique

Déviation

par un champ magnétique

½ m v

n+1

²- ½ m v

n²= q DV

Zone de déviation par

champ magnétique

Cyclotron

B constant

Ω=q B / m constant R n= v n/Ωaugmente

Synchrotron

R = v n/Ω nconstant n= v n/R augmente B n= Ω n (m/q) augmente

Zone d"accélération

par champ électrique (tension DV) vnaugmente V - Mouvement d"une particule chargée dans un champ magnétique uniforme; équation horaire Particule de charge q et de masse m à l"origine O du repère, et de vitesse initiale v

0 contenue dans le plan

(yOz), de coordonnées (0, v

0cosα, v

0sinα). En t, la

particule est en M ( x(t), y (t), z(t) ). Le principe fondamental de la dynamique s"écrit: m dv/dt = q vLB, équation que l"on projette sur les 3 axes.

Selon Ox: m d²x/dt² = q B dy/dt (1)

Selon Oy: m d²y/dt² = - q B dx/dt (2)

Selon Oz: m d²z/dt² = 0 (3)

(3) donne la vitesse et le mouvement selon Oz: dz/dt= v

0sinα= constante, et z(t) = v

0sinαt

Le mouvement se fait à vitesse constante

(v0 sinα ) dans la direction du champ magnétique dx/dt = v

0cosαsin(ωt)

dy/dt = v0cosαcos(ωt) Les deux premières équations donnent la vitesse et le mouvement dans le plan xOy:

ω= q B / m est la pulsation gyromagnétique Dans le plan orthogonal au champ magnétique, la vitesse est constante (v0 cosα x(t) = v

0cosα(1 - cos(ωt)) / ω

y(t) = v0cosαsin(ωt) / ω équation de la trajectoire dans le plan xOy: (x - v

0cosα/ ω)² + y² = (v

0cosα/ ω)²

C"est un cercle

de rayon R = v

0cosα/ ωet centre (v

0 cosα/ ω, 0)

La trajectoire dans l"espace est une hélice de pas h dont l"axe est parallèle au champ magnétique , de vitesse de dérive constante v0 sinα , et de rayon R de giration constant h / R = 2πtan(α) et ||v|| = v

0= constante

Axe q>0Axe q<0

x yz r6qquotesdbs_dbs16.pdfusesText_22
[PDF] loi de laplace pdf

[PDF] force de laplace

[PDF] induction(correction exercice)

[PDF] propulsion fusée quantité de mouvement

[PDF] propulsion par réaction

[PDF] force de pression sur une paroi courbe

[PDF] force de pression sur une paroi plane tp

[PDF] force de pression sur une paroi inclinée

[PDF] force hydrostatique sur une surface courbe

[PDF] force de poussée hydrostatique

[PDF] force hydrostatique appliquée sur une paroi verticale plane

[PDF] quelle valeur ajoutée pensez vous pouvoir apporter

[PDF] décrivez votre personnalité exemple

[PDF] force de proposition synonyme

[PDF] force de proposition définition