[PDF] MATH Tle D OK 2 La présente annale destiné





Previous PDF Next PDF



MATH Tle D OK 2

La présente annale destinée à la classe de terminale D a pour but d'aider le s'appelle forme cartésienne (forme algébrique) du nombre complexe.



ANNALES DE MATHEMATIQUES

TERMINALE S. LYCEE LOUIS ARMAND Annales du baccalauréat S 2000 ... (b) En déduire les solutions dans l'ensemble des nombres complexes de l'équation.



Recueil dannales en Mathématiques Terminale S – Enseignement

Annales Terminale S. Nombres complexes. Tableau récapitulatif des exercices. ? indique que cette notion a été abordée dans l'exercice.



FICHE DE RÉVISION DU BAC

Annales corrigés et résultats du BAC à retrouver sur Studyrama.com © Studyrama un nombre complexe z peut s'écrire de manière unique sous la forme.



Annales 2011-2016 : complexes E 1

Résoudre l'équation (E) dans l'ensemble C des nombres complexes. 2. On considère la suite (Mn) des points d'affixes zn = 2nei(?1)n ?. 6 définie pour n 



Table des matières

Résoudre dans l'ensemble des nombres complexes l'équation P (z)=0. Partie B Une classe de terminale S d'un lycée compte 30 élèves dont 10 filles.



Untitled

Descriptif du contenu du dossier sur les nombres complexes. Le CD sur les compétences terminales en mathématique comporte le dossier du rapport de.



ANNALE Mathématiques BAC D

Coefficient : 6. Baccalauréat 2006 session complémentaire. Exercice 1 (5points). On considère les nombres complexes suivants : 1°Ecrire les nombres a 



fondmath1.pdf

Apprendre ses cours et s'entraîner : en mathématiques le talent a ses lorsqu'il s'agira d'étudier les nombres complexes



Sujet du bac STI2D Mathématiques 2019 - Polynésie

Pour un filtre donné l'atténuation d'un son se calcule à l'aide de deux nombres complexes et . Dans tout l'exercice



[PDF] Annales 2011-2016 : complexes E 1

Résoudre l'équation (E) dans l'ensemble des nombres complexes C Annales 2011-2016 : complexes E 6 correction Pondichéry 2013



PROBLEMES ET SOLUTIONS - Complexes 2017 / 2015

Annales thématiques corrigées du bac S : nombres complexes Enseignement spécifique Annales nouveau programme Avertissement Les énoncés des années 2013 



[PDF] Enseignement obligatoire Nombres complexes

Recueil d'annales en Mathématiques Terminale S – Enseignement obligatoire Nombres complexes Frédéric Demoulin1 Olivier Hervé2



[PDF] Terminale générale - Nombres complexes - Exercices - Devoirs

Nombres complexes – Exercices – Devoirs Terminale Générale - Mathématiques expertes - Année scolaire 2022/2023 http s ://physique-et-maths fr 



nombres complexes - Maths Paris

SUJETS DU BAC S tscomplexes27 pdf : exponentielle complexes équation paramétrique d' un cercle tscomplexes31 pdf : suites de nombres complexes ****



[PDF] Sujets de bac : Complexes

Soit les nombres complexes : ?2 ?6 2 2 et 1) Écrire sous forme algébrique 2) Donner les modules et arguments de et 3) En déduire cos



[PDF] MATH Tle D OK 2 - Faso e-education

La présente annale destinée à la classe de terminale D a pour but d'aider le s'appelle forme cartésienne (forme algébrique) du nombre complexe



[PDF] BD sur CD : un dossier sur les nombres complexes

Descriptif du contenu du dossier sur les nombres complexes Le CD sur les compétences terminales en mathématique comporte le dossier du rapport de



[PDF] ANNALES DE MATHEMATIQUES - Melusine

TERMINALE S LYCEE LOUIS ARMAND Annales du baccalauréat S 2000 (b) En déduire les solutions dans l'ensemble des nombres complexes de l'équation



[PDF] Mathématiques – Séries S – STI2D - FICHE DE RÉVISION DU BAC

L'ensemble des nombres complexes noté C est un ensemble de nombres défini par les propriétés suivantes : - C contient R l'ensemble des réels

:
1

BURKINA FASO

Unité - Progrès - Justice

MINISTERE

DE L'EDUCATION NATIONALE,

DE

L'ALPHABETISATION ET DE LA PROMOTION

DES

LANGUES NATIONALES

ANNALES

MATHÉMATIQUES

TERMINALE D

2

AUTEURS :

Dieudonné KOURAOGO IES

Victor T. BARRY IES

Jean Marc TIENDREBEOGO IES

Clément TRAORE IES

Bakary COMPAORE IES

Abdou KABORE CPES

Maquette et mise en page :

OUEDRAOGO Joseph

ISBN :

Tous droits réservés :

© Ministre de l'Éducation Nationale, de l'Alphabétisation

Et de la Promotion des Langues nationales

Edition :

Direction Générale de la Recherche en Éducation et de l'Innovation Pédagogique 3 4

AVANT-PROPOS

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans

son enseignement et le candidat au baccalauréat D de se préparer à l'épreuve de

mathématiques.

Cette annale comporte trois parties :

Première partie : résumé du cours par chapitre Deuxième partie : énoncés des épreuves du baccalauréat D Troisième partie : propositions de corrigés des épreuves. Les candidats ne tireront profit qu'en résolvant et trouvant par eux-mêmes les solutions sans

avoir recours aux corrigés. Les corrigés sont pour confirmer leurs justes réponses ou donner

d'autres pistes de résolution qui ne sont peut-être pas les leurs. Le succès résulte de l'effort et

de la méthode. Nous vous souhaitons du plaisir dans vos activités mathématiques et attendons vos critiques et suggestions pour des améliorations futures d'autres oeuvres.

Les auteurs

5 6

RAPPEL DE COURS

7

Chapitre : Les suites numériques

Objectifs :

· Mettre en oeuvre les énoncés admis sur les limites des suites ; · Connaître les limites et les comportements asymptotiques comparés des suites numériques.

1. Généralités sur les suites numériques

a) Définition

On appelle suite numérique, toute application

définie de ℕ (ou d'un sous ensemble de ℕ) vers ℝ. On la note ()∈ℕ (ou ()∈). b) Modes de détermination d'une suite

Une suite numérique peut être définie :

Soit par une formule explicite qui permet de calculer les termes en fonction de .

Exemples :

- Soit ()∈ℕ la suite définie par = 2 - 3. - Soit ()∈ℕ ∗ la suite définie par = Soit par la donnée d'un terme quelconque (en général son 1er terme) et d'une relation qui lie deux termes consécutifs (permettant de calculer un terme à partir du terme qui le précède).

Exemples :

- Soit ()∈ℕ la suite définie par = 3 - Soit ()∈ℕ ∗ la suite définie par = 4 + 5 , c) Sens de variation d'une suite Soit ()∈ℕ une suite numérique.

· Si pour tout

(resp. strictement croissante).

· Si pour tout

décroissante (resp. strictement décroissante).

· Si pour tout

∈ ℕ, = alors la suite ()∈ℕ est dite constante. d) Comparaisons sur les suites

Soient

()∈ℕ et ()∈ℕ deux suites numériques et 8 Si pour tout , ≥ (resp. > ) on dit que la suite () est supérieure () (resp. () est strictement supérieure à ()). Si pour tout () (resp. () est strictement inférieure à ()). On dit que la suite () est majorée s'il existe un réel ' tel que pour tout On dit que la suite () est minorée s'il existe un réel ( tel que pour tout Si la suite () est la fois minorée et majorée, on dit qu'elle bornée. Remarque : Une suite positive (resp. négative) est minorée par 0 (resp. majorée par 0).

2. Suites arithmétiques et suites géométriques

a) Suites arithmétiques

· Une suite

()∈ℕ est dite arithmétique s'il existe un réel ) tel que tout

Le réel

) s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : Si le 1er terme est alors pour tout - 1)). Pour tous entier et , (

· Soit

()∈ℕ est une suite arithmétique de raison ). Si ) > 0 alors la suite () est croissante. Si ) < 0 alors la suite () est décroissante. Si ) = 0 alors la suite () est constante.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

2. Si le 1er terme est alors la somme / des

1er termes est :

2. Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : + 1) ×(-+ -) 2. 9 b) Suites géométriques

· Une suite

()∈ℕ est dite géométrique s'il existe un réel 2 tel que tout = 2.

Le réel

2 s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : = 2. Si le 1er terme est alors pour tout = 2(). Pour tous entier et , ( = -2(-).

· Soit

()∈ℕ est une suite arithmétique de raison ). Si 2 > 1 alors la suite () est croissante. Si 0 < 2 < 1 alors la suite () est décroissante. Si 2 = 1 alors la suite () est constante. Si 2 < 0, () est une suite alternée

· Soit

()∈ℕ est une suite arithmétique de raison 2 et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

/= ×1 - 2

1 - 2.

Si le 1er terme est alors la somme / des

1er termes est :

/= ×1 - 2

1 - 2.

Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : /= -×1 - 2

1 - 2.

3. Convergence des suites numériques

a) Définition Soit ()∈ℕ une suite numérique. On dit que la suite () est convergent si elle admet une limite finie 3. On note lim→8= 3. On dit que la suite () est divergente si elle n'est pas convergente. On a lim→8= +∞ ou lim→8= -∞. b) Limite par comparaison Soit ()∈ℕ une suite numérique et S'il existe une suite () telle que pour tout , ≥ et lim→8= +∞ alors lim→8= +∞. 10 S'il existe un suite (:) telle que pour tout alors lim→8= -∞. S'il existe un réel 3 tel que pour tout lim→8:= lim→8= 3, alors lim→8= 3. Si pour tout Si pour tout c) Limite des suites monotones Soit ()∈ℕ une suite numérique. Si () est croissante et majorée alors () converge. Si () est décroissante et minorée alors () converge. Si () est monotone et bornée alors () converge. d) Convergence des suites arithmétiques et géométriques

· Convergence des suites arithmétiques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si ) = 0 alors la suite () est convergente et lim→8= . Si ) ≠ 0 alors la suite () est divergente et lim→8= +∞, ) > 0 lim →8= -∞, >? ) < 0

· Convergence des suites géométriques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si 2 = 1 alors la suite () est convergente et lim→8= Si |2| < 1 alors la suite () est convergente et lim→8= 0. Si 2 > 1 alors la suite () est divergente et lim→8= +∞, > 0 lim →8= -∞, >? < 0 e) Opérations sur les limites des suites Soit ()∈ℕ et ()∈ℕ deux suites numériques. Les propriétés sur les limites de la somme ( + ), du produit (× ) et du quotient @A BA), si ≠ 0; sont les mêmes que celles sur les limites des fonctions numériques. f) Limites des suites définies à l'aide d'une fonction

· Suite de type

= C( Soit C une fonction définie sur ℝ et () une suite définie par = C( Si C admet une limite en +∞ alors lim→8= limD→8C(E).

· Suite de type

= C() Soit C une fonction continue sur un intervalle de ℝ et () une suite numérique définie par = C().

Si la suite

() est convergente et de limite 3, alors 3 = C(3). 11

Chapitre : Courbes paramétrées

Objectifs :

· mettre en évidence et exploiter les périodicités et les symétries éventuelles, · dresser le tableau de variations des fonctions coordonnées x et y, · calculer les coordonnées (x'(t), y'(t)) du vecteur dérivé, · connaître l'interprétation cinématique du vecteur dérivé.

1. Notion de courbes paramétrées

a) Définition Le plan est rapporté à un repère orthonormal (O,F,GHIH) et I est un intervalle de ℝ. Soit

E et J deux fonctions de la variable réelle K.

A tout réel

K, on associe le point '(K) définie par le vecteur

L'GGGGGGH(K)= E(K)FH+ J(K)IH.

L'ensemble (

M) des points '( E;J) du plan tels que :

OE = E(K)

J = J(K), K ∈ est appelée courbe paramétrée de paramètre K.

On note

'(K) ( E(K);J(K)) le point de paramètre K.

Le système

OE = E(K)

J = J(K) , K ∈ est la représentation paramétrique de la courbe (C) ou le système d'équations paramétrique de la courbe (C).

Exemples de représentations paramétriques

OE (K)= 2 - 3K Jquotesdbs_dbs41.pdfusesText_41
[PDF] liaison intermoléculaire définition

[PDF] force dipole dipole

[PDF] interaction intermoléculaire definition

[PDF] force de debye exemple

[PDF] formule du champ magnétique

[PDF] exercice corrigé magnetisme

[PDF] induction magnétique formule

[PDF] clavier packard bell bloqué

[PDF] touche clavier packard bell ne fonctionne plus

[PDF] mémoire sur la satisfaction client pdf

[PDF] défi de fanfaron 7 lettres

[PDF] suivre le ramadan en 6 lettres

[PDF] mettre sous haute protection 8 lettres

[PDF] defi de fanfaron en 7 lettres

[PDF] amoureux transi en 5 lettres