[PDF] [PDF] Les nombres parfaits - Cours





Previous PDF Next PDF



Primalité des nombres de Mersenne

On se restreint donc à q premier impair. Remarques : Tous les nombres de Mersenne ne sont pas premiers par exemple



Les nombres parfaits

aux nombres premiers et a tenté de trouver une formule représentant tous les le nombre de Mersenne 2n ? 1 est premier alors 2n-1(2n ? 1) est un ...



Spécialité TS Nombres premiers de Mersenne et nombres parfaits

Spécialité T S Nombres premiers de Mersenne et nombres parfaits 2010-2011. 1. Définition 1 : Un entier positif n est appelé un nombre parfait si il est égal 



Un nombre premier de 157 chiffres

Rappel : le p-ième nombre de Mersenne est par définition Mp = 2p ? 1. On connaît aujourd'hui 44 nombres de Mersenne premiers à savoir tous les Mp pour.



TESTS DE PRIMALITÉ NOMBRES DE MERSENNE 1. Introduction

fini quadratique sur Fp (p étant un nombre premier) pour le test de primalité de Lucas. 2. Tests de non primalité. Le petit théor`eme de Fermat fournit un 



Primalité des nombres de Mersenne

On suppose Mq non premier et on appelle p un de ses diviseurs premiers. p est donc un diviseur de 0 dans A



M1MI2016 Codes et Cryptologie Feuille dexercices n 1.

On connait 47 nombres premiers de Mersenne. On conjecture qu'il en existe une infinité. 11 Nombres parfaits. Un entier positif a est un nombre parfait si la 



Les nombres premiers - Lycée dAdultes

Tir 31 1394 AP Définition 1 : Un nombre premier est un entier naturel qui admet exacte- ... 1) Calculons les 6 premiers nombres de Mersenne :.



Un critère de primalité pour les nombres de Mersenne

Applications. Définition : Soit q ? N?. Le q-ième nombre de Mersenne est Mq = 2q ? 1. Remarque 1 : Si q n'est pas premier alors Mq n'est pas premier.



Premiers et parfaits notes dexposé

Esfand 23 1396 AP Lycée Bascan de Rambouillet. Introduction `a l'exposé de Daniel Perrin. Fermat



[PDF] Primalité des nombres de Mersenne - Minerve de lENS Rennes

On appelle nombres de Mersenne les Mq = 2q ? 1 pour q ? N On a d'abord le lemme : Lemme 1 Si Mq est un nombre premier alors q est premier



[PDF] Primalité des nombres de Mersenne - ENS Rennes

Le théorème ci-dessous nous donne donc un critère de primalité des nombres de Mersenne pour q premier impair Théorème 1 Pour q premier impair on a



[PDF] Spécialité TS Nombres premiers de Mersenne et nombres parfaits

2n – 1 est appelé un nombre de Mersenne Si 2n - 1 est premier alors il s'agit d'un nombre premier de Mersenne Théorème 1 k est un nombre parfait pair si 



[PDF] NOMBRES de MERSENNE (1588-1648) - Jean-PaulDIERICK

NOMBRES de MERSENNE (1588-1648) Soit a un entier naturel Soit n un entier strictement supérieur à 1 a n - 1 premier ? ( a = 2 et n est premier )



[PDF] Mersenne - MPSI - Camille Guerin

9 jan 2021 · La réciproque de cette proposition est hélas fausse et on connaît des nombres de Mersenne Mp avec p premier qui eux ne sont pas premiers



[PDF] Nombres de Mersenne

Mersenne s'intéressa aux nombres de la forme 2 1 et montra qu'il était nécessaire pour qu'il soit premier que soit premier



[PDF] Fermat Mersenne factorisation et nombres parfaits

Le premier texte est l'extrait suivant d'une lettre de Fermat `a Mersenne datant3 de 1643 (voir [4] tome II p 256 lettre LVII) Cela posé qu'un nombre 



[PDF] 1 Test de primalité 2 Nombres de Mersenne

Les nombres de Mersenne permettent d'obtenir des nombres premiers «gigantesques» Le 12 avril 2009 a été découvert le 47-ième nombre premier de Mersenne 1 il s 



[PDF] nombres de Mersenne et nombres parfaits - MATHÉMATIQUES

La conjecture « Les nombres de Mersenne Mn où n est un nombre premier sont des nombres premiers » est-elle plausible ? Vérifier que M11 admet un diviseur autre 



[PDF] Les nombres parfaits - Cours

On appelle nombre de Mersenne un nombre de la forme Mn = 2n ? 1; si ce nombre est premier on dit alors que c'est un premier de Mersenne

  • Quels sont les 15 premiers nombres de Mersenne ?

    En 1947 la liste correcte des nombres de Mersenne premiers pour n < 258, est établie et vérifiée : n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 et 127. On connaît actuellement une quarantaine de nombres de Mersenne.
  • Comment calculer un nombre de Mersenne ?

    Les nombres de Mersenne sont liés aux nombres parfaits, c'est-à-dire égaux à la somme de leurs diviseurs autres qu'eux-mêmes, car, si Mp est un nombre de Mersenne premier, alors 2p 1 (2p – 1) est un nombre parfait, et tout nombre parfait pair est de cette forme.
  • Quel est le plus grand nombre de Mersenne ?

    Mersenne a calculé (avec quelques erreurs) de tels nombres premiers jusqu'à l'exposant 257. Depuis, c'est la course au plus grand nombre de Mersenne premier, le dernier en date étant pour p = 82 589 933. Avec ses 24 862 048 chiffres, le nombre obtenu est aussi le plus grand nombre premier connu.
  • Nombre de Fermat et primalité
    Soit k un entier strictement positif ; si le nombre 2k + 1 est premier, alors k est une puissance de 2. qui montrent que c + 1 est un diviseur du nombre premier 2k + 1 et donc lui est égal, si bien que k = 2b.

MAT-2901 Histoire des mathematiques

Les nombres parfaits

Marin Mersenne(1588{1648, France)

Moine de l'ordre des Minimes. Le nom de l'ordre vient du fait que les Minimes se consideraient comme les plus humbles des religieux; ils se consacraient a la priere et aux etudes.Mersenne est surtout connu pour son r^ole d'intermediaire entre les savants de son epoque; il faut se rappeler qu'il n'y avait alors ni journaux scientiques, ni colloques, ni... courriel! Partisan d'un travail scientique collectif, il favorisa les echanges entre tous les savants de son temps, leur rendant visite et entretenant avec eux une cor- respondance abondante et suivie. Il organisa en 1635 l'Academia Parisiensis, lieu de rencontre entre savants.

1A sa mort, on trouva dans sa cellule des lettres de plus de

75 correspondants dierents, dont Descartes, Pascal, Fermat, Huygens, Pell, Galilee,

Roberval et Torricelli.1. Outre des regroupements de savants tel celui lance par Mersenne, les academies scientiques rent

leur apparition en Europe au cours duxviiesiecle. Certaines d'entre elles devinrent des institutions de

toute premiere importance et, dans plusieurs cas, sont encore actives aujourd'hui. La plus ancienne est

l'Accademia nazionale dei Lincei(Academie nationale des Lynx), fondee a Rome en 1603 et dont Galilee fut

l'un des premiers membres, en 1611. LaRoyal Society(Royal Society of London for Improving Natural

Knowledge

) fut ociellement etablie en 1660 | mais des rencontres regulieres de savants se tenaient

cependant a Londres depuis plus de quinze ans | et compta parmi ses premiers presidents Newton, de 1703

jusqu'a sa mort en 1727. Du c^ote de la France, c'est en 1666, a l'epoque de Louis XIV et a l'instigation de

Colbert, que fut creee une premiereAcademie des sciences. En 1699, elle fut ociellement placeesous la

protection du roi et devint l'Academie royale des sciences(elle perdit son epithete a la Revolution francaise). Roberval gure parmi ses membres fondateurs. De nombreuses autres academies europeennes

furent par la suite mises en place (Berlin, Saint-Petersbourg, etc.) par des souverains soucieux de soutenir

tant les sciences que... leur propre gloire. La plupart des grands mathematiciens europeens rent partie au

l des ans de l'une ou l'autre de ces academies. Parmi les mathematiciens francais presentement membres de

l'Academie des sciences se retrouvent, outre des sommites telles Jean-Pierre Kahane (qui s'est vu decerner

un doctorathonoris causade l'Universite Laval en 1992) ou Jean-Pierre Serre | tous deux sont nes en 1926

|, de recents medailles Fields tels Wendelin Werner, ne en 1968, et Cedric Villani, ne en 1973. L'un des premiers savants de laboratoire possedant uncabinet de physique, Mer- senne participa a l'institution de la physique quantitative. Fortement oppose a l'alchi- mie, a l'astrologie et aux sciences mystiques, il defendit le rationalisme de Descartes et les theories de Galilee, qu'il contribua a faire conna^tre en dehors de l'Italie. Il proposa a Huygens l'utilisation du pendule pour mesurer le temps, inspirant ainsi les premieres horloges a pendule. Ses travaux les plus importants en physique concernent l'acoustique. Il utilisa le phenomene de l'echo pour mesurer la vitesse du son. En mathematiques, on lui doit de nombreuses traductions des mathematiciens grecs. Mais c'est surtout en theorie des nombres qu'il a laisse sa marque. Il s'est interesse aux nombres premiers et a tente de trouver une formule representant tous les nombres premiers. Quoiqu'il ait echoue dans ses tentatives, ses travaux sur les nombres premiers de la forme 2 n1 ont trouve des echos jusqu'a aujourd'hui. On appellenombre de Mersenneun nombre de la formeMn= 2n1; si ce nombre est premier, on dit alors que c'est unpremier de Mersenne. Il est facile de verier que siMnest premier, alorsnlui-m^eme doit ^etre premier2; la reciproque est cependant fausse (ainsi,M11= 2047 = 2389). En 1644, Mersenne avait annonce que 2n1 est premier sin= 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 et 257, mais compose pour les autres

44 nombres premiers inferieurs a 257; on sait aujourd'hui qu'il s'est trompe pour cinq

de ces nombres : 2

671 et 22571 sont composes, alors qu'il avait oublie 2611,

2

891 et 21071, qui sont premiers.3On conna^t a ce jour 48 nombres premiers de

Mersenne; le plus grand a ete decouvert en janvier 2013 : 2

57 885 1611, un nombre de

17 425 170 chires.

4On ne sait pas s'il existe une innite de premiers de Mersenne.2. Cette observation est due a Pierre de Fermat (1601{1665) et gure dans une lettre a Mersenne datee

de juin 1640. Pour une demonstration, voir le Theoreme 1 plus bas.

3. Il peut ^etre interessant de rappeler l'anecdote suivante a propos du nombreM67= 2671. Le

mathematicien francaisEdouard Lucas (1842{1891) avait montre en 1876 queM67est compose, mettant

ainsi le doigt sur la premiere erreur dans la liste de Mersenne. Mais ses methodes ne lui permettaient

pas de conna^tre les facteurs de ce nombre. Cette question a ete resolue quelques annees plus tard par le

mathematicien americain Frank Nelson Cole (1861{1926), dans un expose sans parolesdemeure celebre et presente en octobre 1903 lors d'un congres de l'American Mathematical Society (voir F.N. Cole, On the factoring of large numbers. Bull. Amer. Math. Soc., 10 (1903), 134{137). Apres avoir ecrit au tableau 2

671 = 147 573 952 589 676 412 927, Cole a patiemment eectue la multiplication

761 838 257 287193 707 721;

obtenant ainsi le produit 147 573 952 589 676 412 927, puis il est aller se rasseoir, le tout sans dire un seul

mot, rapporte-t-on... Cole aurait indique que la recherche des facteurs deM67lui aurait pristrois annees

de dimanches . Cette situation peut ^etre vue comme typique de la dierence fondamentale, en termes de

complexite, entretrouverune solution d'un probleme etverierune solution, nuance qui est au coeur m^eme

du celebre probleme ouvertPvsNP.

4. Voir a ce sujet sur la Toile les siteshttp://www.mersenne.org/(The Great Internet Mersenne Prime

Search) ethttp://primes.utm.edu/mersenne/.

2

Nombres de Mersenne et nombres parfaits

On appellenombre parfaitun nombre qui est egal a la somme de ses diviseurs propres.5 Par exemple, 6 est parfait, puisque 6 = 1 + 2 + 3; de m^eme, 28 est parfait. La recherche de nombres premiers de Mersenne est reliee a la recherche de nombres parfaits; en eet, la proposition 36 du Livre IX desElementsd'Euclide arme que si le nombre de Mersenne 2 n1 est premier, alors 2n1(2n1) est un nombre parfait.6 Rene Descartes (1596{1650), dans une lettre a Mersenne en 1638, arme que tout nombre parfaitpairesteuclidien, c'est-a-dire de la forme 2n1(2n1) avec 2n1 est premier. Mais il n'indique pas quel est son raisonnement. On ignore s'il avait vraiment une telle preuve ou s'il n'emettait qu'une conjecture. Le mathematicien suisse Leonhard Euler (1707{1783), dans un ouvrage posthume,7 donne le premier une demonstration de l'observation de Descartes (voir Theoreme 3 ci-bas). En combinant les resultats d'Euclide et d'Euler, on a ainsi une caracterisation complete des nombres parfaits pairs (voir Corollaire). On ne sait pas s'il existe des nombres parfaits impairs. Mais on a montre que de tels nombres seraient forcement superieurs a 10

1500.8

Les quatre premiers nombres parfaits, 6, 28, 496 et 8128, sont connus depuis l'Antiquite. Ils sont notamment mentionnes dans les travaux de Nicomache de Gerase et de Theon de Smyrne (2e siecle apr. J.-C.). Le cinquieme nombre parfait, 33 550 336, appara^t dans un codex latin datant de

1456. Les sixieme et septieme nombres parfaits (8 589 869 056 et 137 438 691 328)

sont dus a Cataldi (n du 16 esiecle), tandis que le huitieme est d^u a Euler (1772) :

2 305 843 008 139 952 128.5. Cette denition est introduite au Livre VII des

Elementsd'Euclide :Un nombreparfaitest celui

qui est egal a ses parties (sous-entendu : a la somme de ses parties) | voir denition VII.23 dans l'edition (francaise) de B. Vitrac et VII.22 dans celle (anglaise) de T.L. Heath.

6. Autrement dit, siMnest premier, alors leMn{ieme nombre triangulaire est parfait. Dans le lan-

gage d'Euclide, la proposition IX.36 s'enonce comme suit :Si, a partir de l'unite, des nombres en quantite

quelconque sont consecutivement poses en proportion double jusqu'a ce qu'additionnes, leur total devienne

premier, et que ce total, multiplie par le dernier, produise un certain nombre, ce produit sera parfait.Cette

proposition, la toute derniere des trois livres desElementsconsacres a l'arithmetique, est en quelque sorte

le point culminant de ce theme chez Euclide, et la demonstration qu'il en donne est particulierement touf-

fue | surtout si on la compare par exemple a sa demonstration de la proposition IX.20 sur l'innitude

des nombres premiers, qui encore maintenant est utilisee telle quelle (cette derniere demonstration demeure

d'ailleurs l'archetype d'une belle preuve). Le theoreme d'Euclide sur les nombres parfaits est aujourd'hui

considere comme un resultat elementaire en theorie des nombres et on en trouvera plus bas (Theoreme 2)

une demonstration moderne | en deux variantes.

7. LeTractatus de numerorum doctrina capita sedecim, qu supersunt(Traite sur la doctrine des nombres,

compose de seize chapitres) est un projet de livre sur la theorie des nombres ecrit par Euler vraisemblablement

apres 1756, mais publie seulement en 1849. Ce texte est accessible (en latin) sur le site

The Euler Archivea

l'adressehttp://www.math.dartmouth.edu/~euler/, document E792. Le theoreme d'Euler y fait l'objet des

paragraphes 106{108.

8. P. Ochem et M. Rao, Odd perfect numbers are greater than 10

1500.Mathematics of Computation81

(2012) 1869{1877. 3 Vers le debut des annees 1950, 12 nombres parfaits etaient connus. La decouverte de nouveaux nombres parfaits s'est depuis considerablement acceleree gr^ace a des tech- niques de plus en plus sophistiquees ou l'ordinateur a la part belle. Depuis le milieu des annees 1990, les nouveaux nombres parfaits identies l'ont ete dans le cadre du

GIMPS.

Voici la liste des huit premiers nombres parfaits. 6 = 2

1(221)Antiquite

28 = 2

2(231)Antiquite

496 = 2

4(251)Antiquite

8 128 = 2

6(271)Antiquite

33 550 336 = 2

12(2131)Anonyme, 1456

8 589 869 056 = 2

16(2171)Cataldi, 1588

137 438 691 328 = 2

18(2191)Cataldi, 1588

2 305 843 008 139 952 128 = 2

30(2311)Euler, 1772

Preuves des theoremes

Theoreme 1(Fermat, 1640)

SoitMn= 2n1; siMnest premier, alorsnest premier.

D emonstration :An d'etablir que lorsque 2n1 est premier,nest lui-m^eme forcement premier, nous demontrons plut^ot l'armation contraposee : sinest compose, alors 2n1 est aussi compose. Soit doncn=ab, aveca;b >1, et considerons l'identitexk1 = (x1)(xk1+xk2+ +x+ 1) dans laquelle nous posonsx= 2aetk=b. Il suit alors 2 ab1 = (2a1)(2a(b1)+ 2a(b2)++ 2a+ 1); ce qui montre que 2 n1 = 2ab1 est compose, puisque factorise sous forme de deux facteurs chacun superieur a 1 (cara >1).Theoreme 2(Euclide, IX.36)

SiMnest premier, alors2n1Mnest un nombre parfait.

D emonstration 1 :Nous donnons une premiere demonstration utilisant la fonction(n) denie comme la somme de tous les diviseurs de l'entier positifn.9(Un nombre parfaitkest

donc caracterise par le fait que(k) = 2k.)9. Comme de nombreux outils en theorie des nombres, la fonction(n) a ete introduite par Euler, dans

sonTractatus de numerorum doctrina capita sedecim, qu supersunt. Il la denote alors par le symboleRn.

On a par exemple(15) = 1 + 3 + 5 + 15 = 24.A noter quepest premier si et seulement si(p) =p+ 1. 4 On peut se convaincre sans trop de diculte que la fonctionpossede la propriete suivante : siaetbsont deux naturelspremiers entre eux, c'est-a-dire tels quepgcd(a;b) = 1, alors(ab) =(a)(b).10Dans le cas qui nous interesse, notons de plus les deux faits suivants : commeMnest premier, on a(Mn) = 1 +Mn= 1 + (2n1) = 2n; (2n1) = 1 + 2 + 22+ 23++ 2n1= 2n1 =Mn.

On en tire alors

(2n1Mn) =(2n1)(Mn) =Mn2n= 2(2n1Mn); ce qu'il fallait demontrer.D emonstration 2 :Voici une deuxieme demonstration du Theoreme 2, dans laquelle on examine directement les diviseurs du nombre 2 n1Mn. Posant, pour simplier la notation,p=Mn= 2n1, il nous faut donc montrer que la sommeSdes diviseurs propres de 2n1pest justement le nombre 2n1plui-m^eme. Or quels sont les diviseurs propres de 2 n1p? Commepest premier, ce sont precisement les 2n1 nombres

1;2;22;:::;2n1;p;2p;22p;:::;2n2p:

Il s'agit donc d'evaluer la somme

()S= 1 + 2 + 22++ 2n1+p+ 2p+ 22p++ 2n2p:

Notons que lesnpremiers termes de cette somme forment une progression geometrique, de10. En theorie des nombres, une fonction ayant cette propriete est appeleefonction multiplicative| la

fonction(n) fait partie d'un lot de quelques fonctionsarithmetiques(i.e. denies sur l'ensembleNdes

naturels) intervenant abondamment dans ce champ des mathematiques. La multiplicativite de la fonction

(n) est souvent presentee dans des bouquins de theorie des nombres comme un corollaire de resultats

generaux de base sur les fonctions multiplicatives. Mais on peut etablir cette propriete directement comme

suit.Etant donneaetbtels quepgcd(a;b) = 1, on se convainc facilement que tout diviseur deabs'ecrit de

maniere unique comme un produit de la formede, oudjaetejb(regardez les factorisations premieres dea et deb). Si on appelled1;d2;:::;dsles diviseurs deaete1;e2;:::;etceux deb, on a alors (a)(b) = (d1+d2++ds)(e1+e2++et) =d1e1+d1e2++d1et +d2e1+d2e2++d2et... +dse1+dse2++dset:

Or les termes de cette somme concidant avec les diviseurs deab, celle-ci est donc egale a(ab), montrant

ainsi que(ab) =(a)(b) pouraetbpremiers entre eux, et donc queest multiplicative. 5 sorte que 1+2+2

2++2n1= 2n1 =p. Il s'ensuit untelescopagede la sommeS:

S=p+p+ 2p+ 22p+ 23p++ 2n2p

= 2p+ 2p+ 22p+ 23p++ 2n2p = 2

2p+ 22p+ 23p++ 2n2p

= 2

3p+ 23p++ 2n2p...

= 2 n2p+ 2n2p = 2 n1p; ce qu'il fallait demontrer. (On observera que lesn1 derniers termes de () forment aussi une

progression geometrique, ce qui fournirait une autre maniere de conclure le raisonnement.)Theoreme 3(Euler, 1849 | publication posthume)

Soitk, un nombre parfait pair. Alors il existen2Ntel quek= 2n1(2n1)etMn= 2n1 est un nombre premier. Avant de prouver ce resultat, tirons immediatement la consequence suivante des Theoremesquotesdbs_dbs41.pdfusesText_41
[PDF] etude de l'extension de garantie d'electro

[PDF] en mars 2015 max achète une plante verte mesurant 80 cm

[PDF] dans cet exercice on appelle numéro du jour de naissance

[PDF] forces faiblesses opportunités menaces exemple

[PDF] force et faiblesse d'une entreprise

[PDF] formation chauffeur c

[PDF] formation permis c prix

[PDF] formation chauffeur poid lourd gratuite

[PDF] permis camion prix

[PDF] formation chauffeur poid lourd bruxelles

[PDF] formation soudeur

[PDF] formation chauffeur poid lourd namur

[PDF] définition forêt fao

[PDF] la forêt définition simple

[PDF] un petit paragraphe sur la foret