[PDF] BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2022





Previous PDF Next PDF



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2022

2003-2014 des oraux CCP-MP Éd. Ress. Pédag. Ouv. INPT



PSI* ORAUX 2017 - - - - - - - - - - - - - - - - - - - - - 1 CCP - ENSAM

PSI*. ORAUX 2017. - - - - - - - - - - - - - - - - - - - - -. Note : la section 1 contient des sujets CCP et ENSAM. la section 2 contient des sujets Centrale 



Oraux CCP 2017

MP* 16/17. Oraux CCP 2017. Algèbre générale. 1. (ENSAM PSI) Soit P = (X + i)7 + (X ? i)7. a. Montrer que P ? R[X] ; quel est son degré ?



Recueil des exercices tombés aux oraux

25 août 2018 6. Soit un nombre réel ? strictement positif. Montrer qu'à partir d'un certain rang yn. (1+?)ln(n). Exercice 13. RMS 2016 CCP PSI n°145.



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2016

— 18 exercices de probabilités (exercice 95 à exercice 112). Dans l'optique d'aider les futurs candidats à se préparer au mieux aux oraux des CCP chaque 



Notice relative - AUX MODALITÉS - DADMISSION

préparatoires scientifiques de 1re et 2e années des filières MP PC



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

24 sept. 2014 L'équipe des examinateurs de l'oral de mathématiques des CCP filière MP. Contact : Valérie BELLECAVE



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2019

2003-2014 des oraux CCP-MP Éd. Ress. Pédag. Ouv. INPT



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2018

— 18 exercices de probabilités (exercice 95 à exercice 112). Dans l'optique d'aider les futurs candidats à se préparer au mieux aux oraux des CCP chaque 



Oraux 2016 - Solutions

PSI*. ORAUX 2016. - - - - - - - - - - - - - - - - - - - - -. Note : la section 1 contient des sujets CCP et ENSAM. la section 2 contient des sujets Centrale 



[PDF] Exercices Oraux CCP Maths PSI - Optimal Sup Spé

PSI Planche 1 I) Ph ysique : une cavite adiabatique enferme un gaz parfait de co effi cient ? Elle est separee en trois compartiments par deux



Annales PSI - CCINP

Épreuves orales : Rapport de Mathématiques (à venir) Rapport de Physique - Chimie (à venir) Rapport de Sciences industrielles de l'ingénieur (à venir) 



[PDF] oral TP SIIpdf - CCINP

RAPPORT DE L'ÉPREUVE ORALE DE S2I PSI OBJECTIFS DE L'ÉPREUVE En complément de l'épreuve écrite cette épreuve de travaux pratiques a pour objectif



[PDF] Physique-chimie 24 jours pour préparer loral du concours CCINP

Ce manuel a pour but de vous préparer efficacement aux oraux de physique-chimie du concours CCINP (ex CCP) en filière PSI Les exercices proposés sont 



[PDF] Oraux CCP 2017

MP* 16/17 Oraux CCP 2017 Algèbre générale 1 (ENSAM PSI) Soit P = (X + i)7 + (X ? i)7 a Montrer que P ? R[X] ; quel est son degré ?



[PDF] PSI* ORAUX 2017 - - - - - - - - - - - - - - - - - - - - - 1 CCP - ENSAM

Note : la section 1 contient des sujets CCP et ENSAM la section 2 contient des sujets Centrale - Supelec L'épreuve maths 1 dure 30mn sans préparation l' 



Oraux PSI - CPGE-SII

Cette page est destinée à vous apporter des informations sur les épreuves orales de SI en PSI Elle peut ne pas être à jour et sera complétée avec le temps 



[PDF] Recueil des exercices tombés aux oraux

25 août 2018 · Recueil des exercices tombés aux oraux Frédéric Zwolska Lycée Mimard CCP 2017 Peltier et OdlT 2016 CCP PSI n°205 I



Oral - Accueil

Quelques exercices d'oraux Maths/Info tombés à Centrales centrale2_exos pdf Exercices de la banque d'oral CCinP 2021 MP adaptés à la filière PSI



[PDF] ORAL CCP – PSI 2009 PHYSIQUE

ORAL CCP – PSI 2009 PHYSIQUE DEROULEMENT DE L'EPREUVE ORALE DE PHYSIQUE CHIMIE : Le déroulement de l'épreuve est le même que celui des années antérieures

:

CONCOURS COMMUN INP

FILIÈRE MP

BANQUE

ÉPREUVE ORALE

DE MATHÉMATIQUES

SESSION 2022

avec corrigés

V. Bellecave, J.-L. Artigue, A. Begyn, P. Berger, M. Boukhobza, F. Bernard, J.-P. Bourgade, J.Y. Boyer,

S. Busson, S. Calmet, A. Calvez, D. Clenet, J. Esteban, M. Fructus, R. Gabay, B. Harington, J.-P. Keller,

M.-F. Lallemand, A. Leprince, A. Lluel, O. Lopez, J.-P. Logé, Emmanuel Magnin, S. Moinier,

P.-L. Morien, S.Mouez, S. Pellerin, V. Rayssiguier, S. Rigal, A. Rigny, K. Tari, A. Walbron, A. Warin

2014, CC BY-NC-SA 3.0 FR

Dernière mise à jour : le 19/09/21

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

Introduction

L"épreuve orale de mathématiques du CCINP, filière MP, se déroule de la manière suivante :

25mn de préparatio nsur table.

25mn de passage à l"oral.

Chaque sujet proposé est constitué de deux exercices :

un exercice sur 8 p ointsis sude la banque publique accessible sur le site http://ccp.scei-concours.fr

un exercice sur 12 p oints. Les deux exercices proposés portent sur des domaines différents. Ce document contient les112 exercices de la banque pour la session 2022:

58 exercices d"analyse ( exercice 1 à exercice 58).

36 exercices d"algèbre (exercice 59 à exercice 94).

18 exercices de probabilités (exercice 95 à exercice 112).

Dans l"optique d"aider les futurs candidats à se préparer au mieux aux oraux du CCINP, chaque exercice de la

banque est proposé, dans ce document, avec un corrigé. Il se peut que des mises à jour aient lieu en cours d"année scolaire.

Cela dit, il ne s"agira, si tel est le cas, que de mises à jour mineures : reformulation de certaines questions pour

plus de clarté, relevé d"éventuelles erreurs, suppression éventuelle de questions ou d"exercices.

Nous vous conseillons donc de vérifier, en cours d"année, en vous connectant sur le site : http://ccp.scei-concours.fr

si une nouvelle version a été mise en ligne, la date de la dernière mise à jour se trouvera en haut de chaque page.

Si tel est le cas, les exercices concernés seront signalés dans le présent document, page 3.

Remerciements à David DELAUNAY pour l"autorisation de libre utilisation du fichier source de ses corrigés des

exercices de l"ancienne banque, diffusés sur son sitehttp://mp.cpgedupuydelome.fr NB : la présente banque intègre des éléments issus des publications suivantes : A. Antibi, L. d"Estampes et interrogateurs, Banque d"exercices de mathématiques pour le programme

2003-2014 des oraux CCP-MP,Éd. Ress. Pédag. Ouv. INPT,0701(2013) 120 exercices.

http://pedagotech.inp-toulouse.fr/130701 D. Delaunay, Prépas Dupuy de Lôme, cours et exercices corrigés MPSI - MP, 2014. http://mp.cpgedupuydelome.fr L"équipe des examinateurs de l"oral de mathématiques du CCINP, filière MP.

Contact: Valérie BELLECAVE, coordonnatrice

des oraux de mathématiques du CCINP, filière MP. vbellecave@gmail.com

CC BY-NC-SA 3.0 FR Page 2

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

MISES À JOUR :

Les mises à jour signalées sont des mises à jour par rapport à la dernière version publiée sur le site du concours

commun INP, en date du 22/05/21.

Exercice 36

barème modifié pour les examinateurs.

Exercice 39 corrigé 3.

rajout de la ligne : On remarque déjà queFl2.

Exercice 49 corrigé 1.a

Panconverge absolument, donc converge simplement remplacé par :Panconverge absolument, donc converge.

Exercice 81 énoncé question 3.

Déterminer la projection orthogonale remplacé par : Déterminer le projeté orthogonal.

Exercice 86 corrigé 2.a

p^k= 1(carpest premier) donc, d"après 1.,p^k! = 1remplacé par :8i2J1;kK,p^i= 1(carpest premier)

donc, d"après 1.,p^k! = 1.

Exercice 96

SUPPRIMÉ et REMPLACÉpar :

SoitXune variable aléatoire à valeurs dansN, de loi de probabilité donnée par :8n2N,P(X=n) =pn.

La fonction génératrice deXest notéeGXet elle est définie parGX(t) =E[tX] =+1X n=0p ntn. 1. Prouv erque l"in tervalle]1;1[est inclus dans l"ensemble de définition deGX. 2. Soit X1etX2deux variables aléatoires indépendantes à valeurs dansN.

On poseS=X1+X2.

Démontrer que8t2]1;1[,GS(t) =GX1(t)GX2(t):

(a) en utilisan tle pro duitde C auchyde deux séries en tières. (b) en utilisan tuniquemen tla définition de l afonction génératrice par GX(t) =E[tX].

Remarque: on admetra, pour la question suivante, que ce résultat est généralisable ànvariables

aléatoires indépendantes à valeurs dansN. 3.

Un sac con tientquatr eb oules: une b oulen umérotée0, deux b oulesn umérotées1 et une b oulen umérotée2.

Soitn2N. On effectuentirages successifs, avec remise, d"une boule dans ce sac.

On noteSnla somme des numéros tirés.

Soitt2]1;1[.

DéterminerGSn(t)puis en déduire la loi deSn.

Exercice 13

SUPPRIMÉ et REMPLACÉpar :

1.

Rapp eler,oralemen t,la définition, par les suites de v ecteurs,d"une partie compacte d"un espace v ectoriel

normé. 2.

Démon trerq u"unepartie compacte d"un espace v ectorielnormé est une partie fermée de cet espace.

3.

Démon trerq u"unepartie compacte d"un espace v ectorielnormé est une partie b ornéede cet espace.

Indication: On pourra raisonner par l"absurde.

4. On se place su E=R[X]muni de la normejj jj1définie pour tout polynômeP=a0+a1X+::::+anXnde

Epar :jjPjj1=nX

i=0jaij. (a) Justifier que S(0;1) =fP2R[X]=jjPjj1= 1gest une partie fermée et bornée deE. (b) Calculer jjXnXmjj1pourmetnentiers naturels distincts. S(0;1)est-elle une partie compacte deE? Justifier.

CC BY-NC-SA 3.0 FR Page 3

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

BANQUE ANALYSE

EXERCICE 1 analyse

Énoncé exercice 1

1.

On considère deux suites n umériques(un)n2Net(vn)n2Ntelles que(vn)n2Nest non nulle à partir d"un

certain rang etuns+1vn. Démontrer queunetvnsont de même signe à partir d"un certain rang. 2. Déterminer le signe, au v oisinagede l"infini, de : un=sh1n tan1n

Corrigé exercice 1

1.

P arh ypothèse,9N02N=8n2N;n>N0=)vn6= 0.

Ainsi la suiteunv

n est définie à partir du rangN0.

De plus, commeuns+1vn, on alimn!+1u

nv n= 1.

Alors,8" >0,9N2N=N>N0et8n2N;n>N=)u

nv n16". (1)

Prenons"=12

. Fixons un entierNvérifiant(1).

Ainsi,8n2N;n>N=)u

nv n1612

C"est-à-dire,8n2N;n>N=) 12

6unv n1612

On en déduit que8n2N;n>N=)unv

n>12

Et donc,8n2N;n>N=)unv

n>0. Ce qui implique queunetvnsont de même signe à partir du rangN. 2.

Au v oisinagede +1, sh(1n

) =1n +16n3+o1n 3 ettan1n =1n +13n3+o1n 3 . Doncuns+116n3. On en déduit, d"après 1., qu"à partir d"un certain rang,unest négatif.

CC BY-NC-SA 3.0 FR Page 4

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

EXERCICE 2 analyse

Énoncé exercice 2

On posef(x) =3x+ 7(x+ 1)2.

1.

Décomp oserf(x)en éléments simples.

2.

En déduire que fest développable en série entière sur un intervalle du type]r;r[(oùr >0).

Préciser ce développement en série entière et déterminer, en le justifiant, le domaine de validitéDde ce

développement en série entière. 3. (a)

Soit Panxnune série entière de rayonR >0.

On pose, pour toutx2]R;R[,g(x) =+1X

n=0a nxn. Exprimer, pour tout entierp, en le prouvant,apen fonction deg(p)(0). (b) En déduire le dév eloppementlimité de fà l"ordre 3 au voisinage de 0.

Corrigé exercice 2

1. En utilisan tles métho deshabituel lesde décomp ositionen élémen tssimple s,on trouv e: f(x) =3x+ 1+4(x+ 1)2. 2.

D"après le cours, x7!1x+ 1etx7!1(x+ 1)2sont développables en série entière à l"origine.

De plus, on a8x2]1;1[,11 +x=+1P

n=0(1)nxn.

Et,8x2]1;1[,1(1 +x)2=+1P

n=1(1)n+1nxn1( obtenu par dérivation du développement précédent).

On en déduit quefest développable en série entière en tant que somme de deux fonctions développables en

série entière.

Et8x2]1;1[,f(x) = 3+1P

n=0(1)nxn+ 4+1P n=0(1)n(n+ 1)xn.

C"est-à-dire :8x2]1;1[,f(x) =+1X

n=0(4n+ 7)(1)nxn. NotonsDle domaine de validité du développement en série entière def.

D"après ce qui précéde,]1;1[D.

NotonsRle rayon de convergence de la série entièreX(4n+ 7)(1)nxn.

D"après ce qui précédeR>1.

Posons, pour tout entier natureln,an= (4n+ 7)(1)n. Pourx= 1etx=1,limn!+1janxnj= +1doncX(4n+ 7)(1)nxndiverge grossièrement.

DoncR61,162Det162D.

On en déduit queD= ]1;1[.

3. (a)

Soit Panxnune série entière de rayonR >0.

On pose, pour toutx2]R;R[,g(x) =+1X

n=0a nxn.

D"après le cours,gest de classeC1sur]R;R[.

De plus,8x2]R;R[,

g

0(x) =+1X

n=1na nxn1=+1X n=0(n+ 1)an+1xn g

00(x) =+1X

n=1n(n+ 1)an+1xn1=+1X n=0(n+ 1)(n+ 2)an+2xn.

CC BY-NC-SA 3.0 FR Page 5

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

et, par récurrence, on a :

8p2N,8x2]R;R[,g(p)(x) =+1X

n=0(n+ 1)(n+ 2):::(n+p)an+pxn=+1X n=0(n+p)!n!an+pxn.

Ainsi, pour toutp2N,g(p)(0) =p!ap.

C"est-à-dire, pour toutp2N,ap=g(p)(0)p!.

(b)fest de classeC1sur]1;1[. Donc d"après la formule de Taylor-Young, au voisinage de0,f(x) =3X p=0f (p)(0)p!xp+o(x3). (*)

Or, d"après 3.(a), pour tout entierp,f(p)(0)p!est aussi la valeur dupièmecoefficient du développement en

série entière def. Donc, d"après 2., pour tout entierp,f(p)(0)p!= (4p+ 7)(1)p. (**) Ainsi, d"après (*) et (**), au voisinage de0,f(x) =3X p=0(4p+ 7)(1)pxp+o(x3). C"est-à-dire, au voisinage de0,f(x) = 711x+ 15x219x3+o(x3).

CC BY-NC-SA 3.0 FR Page 6

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

EXERCICE 3 analyse

Énoncé exercice 3

1.

On p oseg(x) = e2xeth(x) =11 +x.

Calculer, pour tout entier naturelk, la dérivée d"ordrekdes fonctionsgethsur leurs ensembles de

définitions respectifs. 2.

On p osef(x) =e2x1 +x.

En utilisant la formule de Leibniz concernant la dérivéenièmed"un produit de fonctions, déterminer, pour

tout entier naturelnet pour toutx2Rnf1g, la valeur def(n)(x). 3.

Démon trer,dans le cas g énéral,la form ulede Leibniz, utilisée dans la question précéden te.

Corrigé exercice 3

1.gest de classeC1surRethest de classeC1surRnf1g.

On prouve, par récurrence, que :

8x2R,g(k)(x) = 2ke2xet8x2Rnf1g,h(k)(x) =(1)kk!(1 +x)k+1.

2.gethsont de classeC1surRnf1gdonc, d"après la formule de Leibniz,fest de classeC1surRnf1g

et8x2Rnf1g: f (n)(x) =nX k=0 n k g (nk)(x)h(k)(x) =nX k=0 n k 2 nke2x(1)kk!(1 +x)k+1=n!e2xnX k=0(1)k2nk(nk)!(1 +x)k+1. 3.

Notons (Pn)la propriété :

Sif:I!Retg:I!Rsontnfois dérivables surIalors,fgestnfois dérivable surIet :

8x2I,(fg)(n)(x) =nX

k=0 n k f (nk)(x)g(k)(x).

Prouvons que(Pn)est vraie par récurrence surn.

La propriété est vraie pourn= 0et pourn= 1(dérivée d"un produit).

Supposons la propriété vraie au rangn>0.

Soitf:I!Retg:I!Rdeux fonctionsn+ 1fois dérivables surI.

Les fonctionsfetgsont, en particulier,nfois dérivables surIet donc par hypothèse de récurrence la

fonctionfgl"est aussi avec8x2I,(fg)(n)(x) =nX k=0 n k f (nk)(x)g(k)(x). Pour toutk2 f0;:::;ng, les fonctionsf(nk)etg(k)sont dérivables surIdonc par opération sur les fonctions dérivables, la fonction(fg)(n)est encore dérivable surI. Ainsi la fonctionfgest(n+ 1)fois dérivable et :

8x2I,(fg)(n+1)(x) =nX

k=0 n k f(n+1k)(x)g(k)(x) +f(nk)(x)g(k+1)(x)

En décomposant la somme en deux et en procédant à un décalage d"indice sur la deuxième somme, on

obtient :8x2I,(fg)(n+1)(x) =nX k=0 n k f (n+1k)(x)g(k)(x) +n+1X k=1 n k1 f (n+1k)(x)g(k)(x).

C"est-à-dire

(fg)(n+1)(x) =nX k=1 n k +n k1 f (n+1k)(x)g(k)(x) +n 0 f (n+1)(x)g(0)(x) +n n f (0)(x)g(n+1)(x).

Or, en utilisant le triangle de Pascal, on a

n k +n k1 =n+ 1 k

On remarque également que

n 0 = 1 =n+ 1 0 etn n = 1 =n+ 1 n+ 1

On en déduit que(fg)(n+1)(x) =n+1X

k=0 n+ 1 k f (n+1k)(x)g(k)(x).

Donc(Pn+1)est vraie.

CC BY-NC-SA 3.0 FR Page 7

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

EXERCICE 4 analyse

Énoncé exercice 4

1. Énoncer le théorème des accroisse mentsfinis. 2.

Soit f: [a;b]!Ret soitx02]a;b[.

On suppose quefest continue sur[a;b]et quefest dérivable sur]a;x0[et sur]x0;b[.

Démontrer que, sif0admet une limite finie enx0, alorsfest dérivable enx0etf0(x0) = limx!x0f0(x).

3. Prouv erque l"implication : ( fest dérivable enx0)=)(f0admet une limite finie enx0) est fausse. Indication: on pourra considérer la fonctiongdéfinie par :g(x) =x2sin1x six6= 0etg(0) = 0.

Corrigé exercice 4

1.

Théorème des accroissemen tsfinis :

Soitf: [a;b]!R.

On suppose quefest continue sur[a;b]et dérivable sur]a;b[.

Alors9c2]a;b[tel quef(b)f(a) =f0(c)(ba).

2.

On p osel= limx!x0f0(x).

Soith6= 0tel quex0+h2[a;b].

En appliquant le théorème des accroissements finis, à la fonctionf, entrex0etx0+h, on peut affirmer

qu"il existechstrictement compris entrex0etx0+htel quef(x0+h)f(x0) =f0(ch)h.

Quandh!0(avech6= 0), on a, par encadrement,ch!x0.

Donclimh!01h

(f(x0+h)f(x0)) = limh!0f0(ch) = limx!x0f0(x) =l. On en déduit quefest dérivable enx0etf0(x0) =l. 3. La fonction gproposée dans l"indication est évidemment dérivable sur]1;0[et]0;+1[. gest également dérivable en 0 car1h (g(h)g(0)) =hsin1h

Orlimh!0h6=0hsin1h

= 0carjhsin1h j6jhj.

Donc,gest dérivable en0etg0(0) = 0.

quotesdbs_dbs22.pdfusesText_28
[PDF] sujets ccp 2017

[PDF] oraux ccp date

[PDF] corrigé ccp 2016 physique

[PDF] banque ccp 2018

[PDF] banque ccp mp corrigé

[PDF] histoire des banques centrales et de l'asservissement de l'humanité pdf

[PDF] le role de la banque centrale dans la creation monetaire

[PDF] la relation entre la banque centrale et les banques commerciales pdf

[PDF] banque de commentaires bulletin primaire

[PDF] commentaires bulletin bilan préscolaire

[PDF] bulletin maternelle

[PDF] banque de commentaires première communication

[PDF] commentaire bilan préscolaire

[PDF] commentaire bulletin comportement

[PDF] exemples appréciations livret scolaire maternelle