[PDF] [PDF] Dimension finie - Exo7 - Cours de mathématiques





Previous PDF Next PDF



Chapitre IV Bases et dimension dun espace vectoriel

Problème : Construire des bases dans le cas des espaces vectoriels de dimension finie. Définition : On dit qu'un espace vectoriel est de dimension finie si  



BASES DUN ESPACE VECTORIEL

Le but de ce complément de nature théorique



7. Base et dimension - Sections 3.5 et 3.6

La dimension d'un espace vectoriel V est le nombre de vecteurs dans une base de V . On la note dimV. MTH1007: alg`ebre linéaire.



Dimension finie

famille libre et génératrice. Théorème 2. Soit. = (v1 v2



Espaces vectoriels de dimension finie 1 Base

les composantes du vecteur w = (11



Dimension dun espace vectoriel. Rang. Exemples et applications

prérequis : les notions de base sur les espaces vectoriels matrices équivalentes



Rappels sur les applications linéaires

Définition 5 – Soient E et F deux espaces vectoriels de dimension finie et f Soit E un espace vectoriel de dimension n et {e1...



Familles libres génératrices

http://math.univ-lille1.fr/~doeraene/svsem4/bases.pdf



Chapitre 4 Espaces vectoriels

Définition 4.5.2. Un espace vectoriel non nul V est dit de dimension finie s'il existe un ensemble fini de vecteurs { v1



SYSTEMES LINEAIRES

13-Sept-2004 Le nombre d'éléments de la base est le même pour toutes les bases. f. Définition : dimension. La dimension d'un sous-espace vectoriel E de Rn ...



[PDF] Chapitre IV Bases et dimension dun espace vectoriel

Bases et dimension d'un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d'un espace vectoriel 



[PDF] ESPACE VECTORIEL DE DIMENSION FINIE

Le nombre de vecteurs dans une base s'appelle la dimension et nous verrons comment calculer la dimension des espaces et des sous-espaces 1 Page 2 1 Famille 



[PDF] Dimension finie - Exo7 - Cours de mathématiques

Le nombre de vecteurs dans une base s'appelle la dimension et nous verrons comment calculer la dimension des espaces et des sous-espaces 1 Famille libre 1 1



[PDF] Bases et coordonnées dans un espace vectoriel de dimension finie

Dans cette partie nous allons voir que les colonnes de coordonnées d'un même vecteur v ? E dans deux bases de E différentes sont liées entre elles par une 



[PDF] Espaces vectoriels de dimension finie - Mathieu Mansuy

Exemples • Kn est de dimension finie puisqu'il admet une famille génératrice (une base) finie : sa base canonique • Kn[X] est un K-espace vectoriel de 



[PDF] STRUCTURE DESPACE VECTORIEL - Christophe Bertault

Théorème (Théorèmes de la base incomplète/extraite et existence de bases finies) Soit E un -espace vectoriel de dimension finie (i) Théorème de la base 



[PDF] BASES DUN ESPACE VECTORIEL - Toutes les Maths

Le but de ce complément de nature théorique est de compléter la sous-section 45 3 3 (page 593) de TLM1 concernant les espaces vectoriels de dimension finie 



[PDF] Espaces vectoriels

3 Dimension d'un espace vectoriel Familles libres liées génératrices bases Dimension finie Sous-espace vectoriel en dimension finie



[PDF] Dimension des espaces vectoriels - Normale Sup

20 avr 2013 · Un espace vectoriel E est de dimension finie s'il admet une famille de n'importe quel espace usuel en base : on prend les vecteurs de la 



[PDF] FICHE : DIMENSION DUN ESPACE VECTORIEL

Base Une famille (x1 xn ) de vecteurs de E est une base de E si et seulement si elle est libre et génératrice De plus le cardinal d'une base de E est 

  • Quelle est la dimension d'un espace vectoriel ?

    La dimension d'un espace vectoriel peut être calculée en choisissant une base canonique : Le corps K, vu comme K-espace vectoriel, est de dimension 1. Pour tout entier naturel n, le produit cartésien Kn est l'espace vectoriel des n-uplets de scalaires.
  • Comment déterminer la base d'un espace vectoriel ?

    Pour trouver une base d'un sous-espace vectoriel F , on peut :

    1chercher une famille génératrice B de F ;2si B est libre, c'est terminé, sinon, un des vecteurs peut s'exprimer en fonction des autres. On le supprime et on recommence jusqu'à trouver une famille libre.
  • Comment trouver la dimension d'un Sev ?

    Bonne définition La dimension du sous-espace vectoriel des solutions d'un syst`eme d'équations homog`enes est donnée par la formule : Dimension (du sev des solutions) = nombre d'inconnues -rang du syst`eme d'équations.
  • En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V.

Dimension finie

finie. Pour ces espaces, nous allons voir comment calculer une base, c"est-à-dire une famille minimale de vecteurs

qui engendrent tout l"espace. Le nombre de vecteurs dans une base s"appelle la dimension et nous verrons comment

calculer la dimension des espaces et des sous-espaces.

1. Famille libre

1.1. Combinaison linéaire (rappel)

SoitEunK-espace vectoriel.Définition 1.

Soientv1,v2,...,vp,p>1 vecteurs d"un espace vectorielE. Tout vecteur de la forme u=1v1+2v2++pvp

(où1,2,...,psont des éléments deK) est appelécombinaison linéairedes vecteursv1,v2,...,vp. Les scalaires

1,2,...,psont appeléscoefficientsde la combinaison linéaire.1.2. Définition

Définition 2.

Une famillefv1,v2,...,vpgdeEest unefamille libreoulinéairement indépendantesi toute combinaison linéaire

nulle

1v1+2v2++pvp=0

est telle que tous ses coefficients sont nuls, c"est-à-dire

1=0,2=0, ...p=0.

Dans le cas contraire, c"est-à-dire s"il existe une combinaison linéaire nulle à coefficients non tous nuls, on dit

que la famille estliéeoulinéairement dépendante. Une telle combinaison linéaire s"appelle alors unerelation de

dépendance linéaireentre lesvj.

DIMENSION FINIE1. FAMILLE LIBRE2

1.3. Premiers exemples

Pour des vecteurs deRn, décider si une famillefv1,...,vpgest libre ou liée revient à résoudre un système linéaire.

Exemple 1.

Dans leR-espace vectorielR3, considérons la famille8 :0 @1 2 31
A ,0 @4 5 61
A ,0 @2 1 01 A9 On souhaite déterminer si elle est libre ou liée. On cherche des scalaires(1,2,3)tels que 1€

123Š

+2€

456Š

+3€

210Š

=€000Š ce qui équivaut au système : 8

1+42+23=0

21+52+3=0

31+62=0

On calcule (voir un peu plus bas) que ce système est équivalent à :123=0

2+3=0Ce système a une infinité de solutions et en prenant par exemple3=1on obtient1=2et2=1, ce qui fait que

20 @1 2 31
A 0 @4 5 61
A +0 @2 1 01 A =0 @0 0 01 A

La famille

8 :0 @1 2 31
A ,0 @4 5 61
A ,0 @2 1 01 A9 est donc une famille liée. Voici les calculs de la réduction de Gauss sur la matrice associée au système :0 @1 4 2 2 5 1

3 6 01

A 0 @1 4 2 033
0661
A 0 @1 4 2 033

0 0 01

A 0 @1 4 2 0 1 1

0 0 01

A 0 @1 02 0 1 1

0 0 01

A

Exemple 2.

Soientv1=

€111Š

,v2=

€210Š

,v3=

€211Š

. Est-ce que la famillefv1,v2,v3gest libre ou liée? Résolvons le système linéaire correspondant à l"équation1v1+2v2+3v3=0 :8

1+22+23=0

12+3=0

1+3=0

On résout ce système et on trouve comme seule solution1=0,2=0,3=0. La famillefv1,v2,v3gest donc une

famille libre.

Exemple 3.

2103‹

1251‹

7158‹

. Alorsfv1,v2,v3gforme une famille liée, car

3v1+v2v3=0.

1.4. Autres exemples

Exemple 4.

Les polynômesP1(X) =1X,P2(X) =5+3X2X2etP3(X) =1+3XX2forment une famille liée dans l"espace vectorielR[X], car

3P1(X)P2(X)+2P3(X) =0.

DIMENSION FINIE1. FAMILLE LIBRE3

Exemple 5.Dans leR-espace vectorielF(R,R)des fonctions deRdansR, on considère la famillefcos,sing. Montrons que c"est

une famille libre. Supposons que l"on aitcos+sin=0. Cela équivaut à

8x2Rcos(x)+sin(x) =0.

En particulier, pourx=0, cette égalité donne=0. Et pourx=2, elle donne=0. Donc la famillefcos,singest

libre. En revanche la famillefcos2,sin2,1gest liée car on a la relation de dépendance linéairecos2+sin21=0. Les

coefficients de dépendance linéaire sont1=1,2=1,3=1.

1.5. Famille liée

SoitEunK-espace vectoriel. Siv6=0, la famille à un seul vecteurfvgest libre (et liée siv=0). Considérons le cas

particulier d"une famille de deux vecteurs.Proposition 1. La famillefv1,v2gest liée si et seulement si v1est un multiple de v2ou v2est un multiple de v1.

Ce qui se reformule ainsi par contraposition : " La famillefv1,v2gest libre si et seulement siv1n"est pas un multiple

dev2etv2n"est pas un multiple dev1. »

Démonstration.

Supposons la famillefv1,v2gliée, alors il existe1,2non tous les deux nuls tels que1v1+2v2=0. Si c"est1

qui n"est pas nul, on peut diviser par1, ce qui donnev1=2

1v2etv1est un multiple dev2. Si c"est2qui n"est

pas nul, alors de mêmev2est un multiple dev1.

Réciproquement, siv1est un multiple dev2, alors il existe un scalairetel quev1=v2, soit1v1+()v2=0, ce

qui est une relation de dépendance linéaire entrev1etv2puisque16=0: la famillefv1,v2gest alors liée. Même

conclusion si c"estv2qui est un multiple dev1.Généralisons tout de suite cette proposition à une famille d"un nombre quelconque de vecteurs.

Théorème 1.

SoitEunK-espace vectoriel. Une familleF=fv1,v2,...,vpgdep>2vecteurs deEest une famille liée si et seulement

si au moins un des vecteurs deFest combinaison linéaire des autres vecteurs deF.Démonstration.C"est essentiellement la même démonstration que ci-dessus.

Supposons d"abordFliée. Il existe donc une relation de dépendance linéaire

1v1+2v2++pvp=0,

aveck6=0 pour au moins un indicek. Passons tous les autres termes à droite du signe égal. Il vient

kvk=1v12v2pvp,

oùvkne figure pas au second membre. Commek6=0, on peut diviser cette égalité parket l"on obtient

v k=1 kv 12 kv 2p kv p,

c"est-à-dire quevkest combinaison linéaire des autres vecteurs deF, ce qui peut encore s"écrirevk2VectF nfvkg

(avec la notation ensemblisteAnBpour l"ensemble des éléments deAqui n"appartiennent pas àB).

Réciproquement, supposons que pour un certaink, on aitvk2VectF nfvkg. Ceci signifie que l"on peut écrire

v k=1v1+2v2++pvp, oùvkne figure pas au second membre. Passantvkau second membre, il vient

0=1v1+2v2+vk++pvp,

ce qui est une relation de dépendance linéaire pourF(puisque16=0) et ainsi la familleFest liée.

DIMENSION FINIE1. FAMILLE LIBRE4

1.6. Interprétation géométrique de la dépendance linéaire

•DansR2ouR3, deux vecteurs sont linéairement dépendants si et seulement s"ils sont colinéaires. Ils sont donc sur

une même droite vectorielle.

DansR3, trois vecteurs sont linéairement dépendants si et seulement s"ils sont coplanaires. Ils sont donc dans un

même plan vectoriel.v 1v 20 e 2e 3e 1v 1v 2v

3Proposition 2.

SoitF=fv1,v2,...,vpgune famille de vecteurs deRn. SiFcontient plus denéléments (c"est-à-direp>n), alorsF

est une famille liée.Démonstration.Supposons que v 1=0 B BB@v 11 v 21...
v n11 C

CCAv2=0

B BB@v 12 v 22...
v n21 C

CCA...vp=0

B BB@v 1p v 2p... v np1 C CCA.

L"équation

x

1v1+x2v2++xpvp=0

donne alors le système suivant8>>>< >>:v

11x1+v12x2++v1pxp=0

v

21x1+v22x2++v2pxp=0

v n1x1+vn2x2++vnpxp=0

C"est un système homogène denéquations àpinconnues. Lorsquep>n, ce système a des solutions non triviales

(voir le chapitre " Systèmes linéaires », dernier théorème) ce qui montre que la familleFest une famille liée.Mini-exercices.

1.

Pour quelles valeurs det2R,1t,t2

test une famille libre deR2? Même question avec la famillen1t t 2 t2 11

€1t1Š

o deR3. 2. Montrer que toute famille contenant une famille liée est liée. 3. Montrer que toute famille inclue dans une famille libre est libre. 4.

Montrer que sif:E!Fest une application linéaire et quefv1,...,vpgest une famille liée deE, alors

ff(v1),...,f(vp)gest une famille liée deF. 5.

Montrer que sif:E!Fest une application linéaireinjectiveet quefv1,...,vpgest une famille libre deE, alors

ff(v1),...,f(vp)gest une famille libre deF.

DIMENSION FINIE2. FAMILLE GÉNÉRATRICE5

2. Famille génératrice

SoitEun espace vectoriel sur un corpsK.

2.1. DéfinitionDéfinition 3.Soientv1,...,vpdes vecteurs deE. La famillefv1,...,vpgest unefamille génératricede l"espace vectorielEsi

tout vecteur deEest une combinaison linéaire des vecteursv1,...,vp.

Ce qui peut s"écrire aussi :

8v2E91,...,p2Kv=1v1++pvpOn dit aussi que la famillefv1,...,vpgengendrel"espace vectorielE.

Cette notion est bien sûr liée à la notion de sous-espace vectoriel engendré : les vecteursfv1,...,vpgforment une

famille génératrice deEsi et seulement siE=Vect(v1,...,vp).

2.2. Exemples

Exemple 6.

Considérons par exemple les vecteursv1=

€100Š

,v2=

€010Š

etv3=

€001Š

deE=R3. La famillefv1,v2,v3gest génératrice car tout vecteurv=€ xyzŠ deR3peut s"écrire xyzŠ =x€100Š +y€010Š +z€001Š

Les coefficients sont ici1=x,2=y,3=z.

Exemple 7.

Soient maintenant les vecteursv1=

€111Š

quotesdbs_dbs27.pdfusesText_33
[PDF] comment trouver une base

[PDF] espace vectoriel base exercices corrigés

[PDF] base d'un espace vectoriel

[PDF] montrer qu'une famille est une base

[PDF] forme quadratique exo7

[PDF] forme quadratique cours

[PDF] forme bilinéaire et forme quadratique

[PDF] forme quadratique exercice corrigé

[PDF] montrer que q est une forme quadratique

[PDF] dessin industriel cours pdf

[PDF] coupes et sections dessin technique exercices corrigés

[PDF] bases du dessin technique pdf

[PDF] dessin technique

[PDF] cours et exercices avec solutions

[PDF] dessin technique exercices corrigés pdf