[PDF] ALGÈBRE Cours et Exercices Première Année LMD





Previous PDF Next PDF



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Chapitre 1. Introduction. 5. Chapitre 2. Élément de logique et méthodes de raisonnement avec Exercices. Corrigés. 7. 1. Régles de logique formelle.



Algèbre et Analyse Recueil dExercices Corrigés

08‏/03‏/2018 Le lecteur y trouvera aussi des exercices supplémentaires sans corrigé ainsi que certains sujets d'examens. Avant chaque série d'exercices



[PDF] Algèbre - Exo7 - Cours de mathématiques

corrigés. Au bout du chemin le plaisir de découvrir de nouveaux univers



Université Paris Sud Année 2019–2020 L3/S5 M313 Algèbre

−Exercices . L3/S5 M313 Algèbre Générale



ALGÈBRE

29‏/10‏/2016 Exercices corrigés - MPSI . ... Il est donc indispensable d'avoir exhibé une valeur convenable de x et c'est en général là que se trouve la ...



TD dalgèbre générale

TD d'algèbre générale. Jean-Romain Heu. 2021. 1. Page 2. 1 Logique. Exercice de base La plupart des exercices peuvent être corrigés à l'aide de Maple ou ...



ALGÈBRE Cours et Exercices Première Année LMD

D'une manière générale à n propositions correspond 2n possibilités d'attribution de vérité. 1.2 Connecteurs logiques. Si P est une proposition et Q est une 



Création et utilisation datlas anatomiques numériques pour la

Algèbre. (Cours+Exercices corrigés). École Supérieure en Génie Électrique et Énergétique d'Oran ESG2E. Dr. Imene Meriem Mostefaoui. 2017-2018. Page 2. Page 3 



Untitled

Exercices et problèmes corrigés d'algèbre générale Problèmes corrigés de mécanique quantique avec. Abdelmoumen BOULBABA et Ezzeddine.



Tous les exercices dAlgèbre et de Géométrie MP

corrigés. Un soin tout particulier est apporté à l'écriture des éléments ... général. On sait que si v ∈ C(u) alors les sous- espaces propres Ek sont ...



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

est vraie. 3. Exercices Corrigés. Exercice 1. Donner la négation des propositions suivantes : (1) ?x ? IR?y 



Algèbre et Analyse Recueil dExercices Corrigés

Mar 8 2018 consacrée à l'Algèbre



ALGÈBRE

Oct 29 2016 EXERCICES CORRIGÉS. ALGÈBRE. NICOLAS BASBOIS. PIERRE ABBRUGIATI ... ne commutent pas en général



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices corrigés. Au bout du chemin



Exo7 - Exercices de Michel Quercia

Algèbre générale. 1 Applications. Exercice 2889 Images directes et réciproques. Soit f : E ? F une application A



Tous les exercices dAlgèbre et de Géométrie MP

Les corrigés proposés sont toujours complets et commentés quand il le faut en tête de cet ouvrage un chapitre d'algèbre générale suivi d'un chapitre de ...



ALGÈBRE Cours et Exercices Première Année LMD

ALGÈBRE. Cours et Exercices. Première Année LMD. Marir Saliha D'une manière générale à n propositions correspond 2n possibilités ... Corrigé 1.5.1.



Cours de Calcul Tensoriel avec Exercices corrigés

avec Exercices corrigés 3 Algèbre tensorielle ... La variation de l'indice se fera sur tout le domaine possible en général de 1 à n



Mathématiques pour léconomie et la gestion

Déjà parus dans la nouvelle collection de manuels universitaires scientifiques. Anne CORTELLA. Algèbre. Théorie des groupes. Cours et exercices corrigés 



TD dalgèbre générale

La plupart des exercices peuvent être corrigés à l'aide de Maple ou Wolfram. Exercice de base. Calculer toutes les sommes A+B et tous les produits matriciels AB 



Exo7 - Cours de mathématiques

activement par vous-même des exercices sans regarder les solutions Pour vous aider vous trouverez sur le site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices corrigés



Searches related to algebre generale exercices corrigés

Exercice 5 12 (Tous TD) Résoudre l’équation z2+(1? i ? 3)z ? (1+i ? 3) = 0 a) Exprimer les racines z1et z2en fonction des nombres complexes a = ( ? 3 + i)/2 et b = (?1+i ? 3)/2 b) Déterminer le module et l’argument de ces racines En déduire les valeurs de cos(5?/12) sin(5?/12) cos(11?/12) et sin(11?/12)

ALGÈBRE

Cours et Exercices

Première Année LMD

Marir Saliha

2

Table des matières

1 Notions de Logique Mathématique 6

1.1 Préambule . . . . . . . . . . . . . . . . . . . . . . .

6

1.2 Connecteurs logiques . . . . . . . . . . . . . . . . .

8

1.3 Propriétés des connecteurs logiques . . . . . . . . .

10

1.4 Quantificateurs mathématiques . . . . . . . . . . .

12

1.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . .

15

2 Ensembles et Applications 20

2.1 Ensembles . . . . . . . . . . . . . . . . . . . . . . .

20

2.1.1 Inclusion . . . . . . . . . . . . . . . . . . . .

21

2.1.2 Opérations sur les ensembles . . . . . . . . .

22

2.1.3 Propriétés des opérations sur les ensembles .

25

2.1.4 Partition . . . . . . . . . . . . . . . . . . . .

26

2.1.5 Produit Cartésien . . . . . . . . . . . . . . .

27

2.1.6 Exercices sur les ensembles . . . . . . . . . .

27

2.2 Applications . . . . . . . . . . . . . . . . . . . . . .

31

2.2.1 Composition d"applications . . . . . . . . .

32

2.2.2 Image directe et Image réciproque . . . . . .

32

2.2.3 Injection, Surjection, Bijection . . . . . . . .

3 6

2.2.4 Exercices . . . . . . . . . . . . . . . . . . .

41

3 Relations Binaires 48

3.1 Généralités . . . . . . . . . . . . . . . . . . . . . .

48

3.1.1 Propriétés des relations binaires dans un en-

semble . . . . . . . . . . . . . . . . . . . . . 49

3.2 Relation d"équivalence . . . . . . . . . . . . . . . .

50

3.3 Relation d"ordre . . . . . . . . . . . . . . . . . . . .

52

3.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . .

53
3

4TABLE DES MATIÈRES

Bibliographie 62

Introduction

Ce polycopié reprend quelques notions mathématiques à la base de la partie Algèbre de l"unité d"Enseignement Maths1 de premières années LMD Sciences et techniques et Mathématiques et informa- tique. Il peut aussi être utilement utilisé par les étudiants d"autres paliers aussi bien en sciences et sciences et techniques que ceux de

Biologie, Sciences économiques ou autre.

Les chapitres de ce texte se décomposent de la façon suivante : Le cours contient les notions à assimiler. Il convient d"en ap- prendre les définitions et les énoncés des résultats principaux. Les démonstrations données doivent être comprises ainsi que les exemples proposés tout au long du cours. La partie entrainement comprend des exercices qui ont été choisis soigneusement. Il est conseillé de s"exercer à résoudre par soi-même les exercices sans avoir une solution à côté . C"est grâce à ce travail personnel indispensable que l"on peut aller loin dans la compréhension et l"assimilation des notions mathématiques introduites. C"est la seule méthode connue à ce jour pour progresser en mathématiques. L"étu- diant consciencieux travaillera la justification de chacune de ses réponses. Rappelons que trouver la bonne réponse ne suffit pas en science, il faut aussi la justifier! La partie Solutions des exercices proposés que l"étudiant pourra consulter en cas de difficulté. 5

Chapitre 1

Notions de Logique

Mathématique

Sommaire1.1 Préambule . . . . . . . . . . . . . . . . . .6

1.2 Connecteurs logiques . . . . . . . . . . .

8

1.3 Propriétés des connecteurs logiques . .

10

1.4 Quantificateurs mathématiques . . . . .

12

1.5 Exercices . . . . . . . . . . . . . . . . . . .

15 1.1 Préambule

Les mathématiques actuelles sont bâties de la façon suivante : Axiome :Un axiome est un énoncé supposé vrai à priori et que l"on ne cherche pas à démontrer. Exemple 1.1.1.Euclide a énoncé cinq axiomes qui devaient être la base de la géométrie euclidienne; le cinquième axiome a pour énoncé : Par un point extérieur à une droite, il passe une et une seule droite parallèle à cette droite. 6

1.1. PRÉAMBULE7

Les cinq axiomes de Péano, qui définissent l"ensemble des en- tiers naturels. Le cinquième axiome est : siPest une partie deNcontenant0et que tout successeur de chaque élément dePappartient àP(le successeur de n estn+1) alorsP=N. Cet axiome est appelé " axiome d"in- duction ». Définition :Une définition est un énoncé dans lequel on décrit les particularités d"un objet mathématique. On doit avoir conscience que le mot "axiome" est parfois synonyme de "définition". Démonstration :(ou preuve) c"est réaliser un processus qui per- met de passer d"hypothèses supposées vraies à une conclusion et ce en utilisant des règles strictes de logique. On décide enfin de qualifier de vraie toute affirmation obtenue en fin de démonstration et on l"appelle selon son importance,

Lemme :Un résultat d"une importance mineure.

Théorème :Un résultat d"une importance majeure. Corollaire :Un corollaire à un théorème est conséquence à ce théo- rème. Conjecture :Un résultat mathématique que l"on suppose vrai sans parvenir à le démontrer. Exemple 1.1.2.La conjecture de Fermat : sin2N; n3, il n"existe pas d"entiers naturelsx;y;ztels que x n+yn=zn Récemment, ce résultat a été démontré. Proposition :Une proposition est un énoncé mathématique pouvant être vrai ou faux, on la note par les lettres P, Q, R,...etc. Exemple 1.1.3.L"énoncé " 24 est multiple de 4 » est une propo- sition vraie. L"énoncé " 19 est multiple de 3 » est une proposition fausse. A toute proposition correspond une table de véritéP V FouP 1 0

8CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

Pour deux propositionsPetQnon précisées, correspond22possi- bilités d"attribution de véritéPQ 11 10 01 00 D"une manière générale, ànpropositions correspond2npossibilités d"attribution de vérité.

1.2 Connecteurs logiques

Si P est une proposition et Q est une autre proposition, nous allons définir de nouvelles propositions construites à partir de P et de Q.

Négation d"une proposition

La négation d"une proposition P est une proposition notéeP et définie à partir de sa table de véritéPP 10 01

Conjonction " et »

La conjonction est le connecteur logique " et » qui à tout couple de propositions(P;Q)associe la proposition "P et Q », notéeP^Qet définie ainsi :P^Qest vraie siPetQsont toutes les deux vraies simultanément, fausse dans les autres cas. On résume ceci dans la table de vérité suivantePQP^Q111 100
010 000

1.2. CONNECTEURS LOGIQUES9

Disjonction " ou »

La disjonction est le connecteur logique " ou » qui à tout couple de propositions(P;Q)associe la proposition "P ou Q », notéeP_Qet définie ainsi :P_Qest fausse siPetQsont toutes les deux fausses simultanément, vraie dans les autres cas. On résume ceci dans la table de vérité suivantePQP_Q111 101
011 000

Implication ")»

L"implication est le connecteur logique qui à tout couple de propositions(P;Q)associe la proposition "P implique Q », notéeP)Qet définie ainsi :P)Qest fausse lorsqueP est vraie etQest fausse, vraie dans les autres cas. On résume ceci dans la table de vérité suivantePQP)Q111 100
011 001

Equivalence ",»

L"équivalence est le connecteur logique qui à tout couple de propositions(P;Q)associe la proposition "P équivaut Q », notéeP,Qet définie ainsi :P,Qest vraie lorsquePet Qont la même valeur de vérité, fausse dans les autres cas. On résume ceci dans la table de vérité suivantePQP,Q111 100
010 001

10CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

1.3 Propriétés des connecteurs logiques

Considérons la propositionP. Cette proposition peut prendre la valeur de vérité vrai ou faux. Considérons la proposition composée R=P_P Cette proposition est remarquable. En effet,Rest toujours vraie et ce indépendamment deP. Vérifions-le :PPP_P 101

011(1.1)

La propositionRest alors qualifiée de tautologie. Définition 1.3.1.Une proposition qui est vraie quelles que soient les valeurs de vérité des propositions qui la composent est appelée une Tautologie. Propriétés 1.3.1.Quelles que soient les valeurs de vérité des pro- positionsP,QetR, les propositions suivantes sont toujours vraies. P_P P,P P^P,P P_P,P

P^Q,Q^P(Le connecteur^est commutatif)

P_Q,Q_P(Le connecteur_est commutatif)

1.3. PROPRIÉTÉS DES CONNECTEURS LOGIQUES11

(P^Q)^R,P^(Q^R)(Le connecteur^est associatif) (P_Q)_R,P_(Q_R)(Le connecteur_est associatif)

P^(Q_R),(P^Q)_(P^R)(Le connecteur^est dis-

tributif sur_)

P_(Q^R),(P_Q)^(P_R)(Le connecteur_est dis-

tributif sur^)

P^(P_Q),P

P_(P^Q),P

[(P)Q)^(Q)R)])(P)R)(Transitivité de)) (P,Q),[(P)Q)^(Q)P)]

P^Q,P_Q(Lois de Morgan)

P_Q,P^Q(Lois de Morgan)

[(P,Q)^(Q,R)])(P,R)(Transitivité de,) (P)Q),(P_Q) (P)Q),(Q)P)(contraposée) Remarque 1.3.1.On peut démontrer ces propriétés en dressant la table de vérité.

12CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

1.4 Quantificateurs mathématiques

a)-

F ormeprop ositionnelle

Définition 1.4.1.Etant donné un ensembleE. On appelle forme propositionnelle à une variable définie surE, toute ex- pression mathématique contenant une variablex, telle que quand on remplace cette variable par un élément deE, on obtient une proposition. On la note parP(x).

Exemple 1.4.1.L"énoncé suivant :

P(n) : " n est un entier naturel multiple de 3» est une forme propositionnelle surNcar il devient une pro- position lorsqu"on donne une valeur àn. En effet, P(30 ): "30 est multiple de 3» est une pr opositionvr aie. P(19 ): "19 est multiple de 3» est une pr opositionfausse. Remarque 1.4.1.On peut avoir une forme propositionnelle à deux variables notéeP(x;y);x2E;y2FoùEetFsont deux ensembles. b)-

Les Qu antificateursuni verselssimples

A partir d"une forme propositionnelle P(x) définie sur un en- semble E, on construit de nouvelles propositions dites propo- sitions quantifiées en utilisant les quantificateurs "quel que soit» et "il existe». Définition 1.4.2.Le quantificateur "quel que soit», noté8, permet de définir la proposition "8x2E;P(x)» qui est vraie si pour tous les élémentsxdeE, la propositionP(x)est vraie.

Exemple 1.4.2.

-8x2[3;1];x2+ 2x30est une proposition vraie. -8n2N;(n3)n >0est une proposition fausse.

1.4. QUANTIFICATEURS MATHÉMATIQUES13

Définition 1.4.3.Le quantificateur " il existe au moins», noté9, permet de définir la proposition "9x2E;P(x)» qui est vraie si on peut trouver au moins un élémentx2Etel que la propositionP(x)soit vraie. S"il existe un et un seul élément x, on pourra écrire

9!x2E;P(x)

On dira dans ce cas qu"il existe un élément unique x vérifiant P(x).

Exemple 1.4.3.

-"9x2R;x2= 4» est une proposition vraie. -"9x2R;ex<0» est une proposition fausse. -"8n2N;(n2pair)n pair» est une proposition vraie. c)-

Les Règles de négation

SoitP(x)une forme propositionnelle sur un ensembleE.

La négation de8x2E;P(x)est9x2E;P(x)

La négation de9x2E;P(x)est8x2E;P(x)

Exemple 1.4.4.

-9x2R;ex0, 8x2R;ex>0 -8n2N;(n2pair)n pair),(9n2N;(n2pair)^(n impair)) d)-

Les Quan tificateursm ultiples

Définition 1.4.4.SoitP(x;y)une forme propositionnelle à deux variables avecx2Eety2F. -La proposition quantifiée :8x2E;8y2F; P(x;y)est vraie lorsque tous les élémentsxdeEet tous les élémentsydeF vérifientP(x;y).

14CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

-La proposition quantifiée :9x2E;9y2F; P(x;y)est vraie lorsqu"il existe au moins un élémentxdeEet lorsqu"il existe au moins un élémentydeFvérifiantP(x;y).

Exemple 1.4.5.

-La proposition quantifiée :

8n2N;8x2R+;1 +nx0

est vraie. -La proposition quantifiée :

8n2N;8x2R;1 +nx0

est fausse. -La proposition quantifiée :

9x2R;9y2R;2x5y= 1

est vraie. e)-

Règles d" utilisation

quotesdbs_dbs48.pdfusesText_48
[PDF] algebre generale mp

[PDF] algèbre linéaire cours exercices corrigés pdf

[PDF] algèbre linéaire espace vectoriel exercice corrigé

[PDF] algèbre linéaire exo7

[PDF] algèbre linéaire pour les nuls

[PDF] algèbre linéaire: matrice

[PDF] algebre pdf

[PDF] algebre s2 economie exercices corrigés pdf

[PDF] algebre s2 economie pdf

[PDF] algebre s2 exercices corrigés pdf

[PDF] algérie 1

[PDF] algérie ancienne colonie française

[PDF] algerie ancienne photos

[PDF] algerie news

[PDF] algerie part