[PDF] Math 431 - Real Analysis I k and the bounded sequence





Previous PDF Next PDF



Sigma notation

(?1)k 1 k . Key Point. To write a sum in sigma notation try to find a formula involving a variable k where the first.



1 Convergence Tests

Root Test and Ratio Test. The root test is used only if powers are involved. Root Test. ? k2. 2k converges: (ak). 1/k. = 



The sum of an infinite series

Above the sigma we write the value of k for the last term in the sum which in this case is 10. So in this case we would have. 10. ? k=1. 2k +1=3+5+7+ .



sigma-notation.pdf

The symbol ? (capital sigma) is often used as shorthand notation to indicate k=1 xk. Solution: x1 + x2 + x3 + x4 + x5. We also use sigma notation in the ...



University of Plymouth

12 févr. 2006 b) P(k) ? P(k + 1) for all natural numbers k . The standard analogy to this involves a row of dominoes: if it is shown.



Sample Induction Proofs

Thus (1) holds for n = k + 1



Math 431 - Real Analysis I

k and the bounded sequence bk = (?1)k. Notice that the sequence akbk = 1 k k=2. 1 k(ln k)p converges if and only if p > 1 by using the integral test.



Series

n=1 an converges to a sum S ? R if the sequence (Sn) of partial sums. Sn = n. ? k=1 ak converges to S as n ? ?. Otherwise the series diverges.



MATHEMATICAL INDUCTION SEQUENCES and SERIES

Then we will prove that if P(k) is true for some value of k then so is P(k + 1) ; this is called "the inductive step". Proof of the method. If P(1) is OK



Top Ten Summation Formulas

Top Ten Summation Formulas. Name. Summation formula. Constraints. 1. Binomial theorem. (x + y)n = n. ? k=0 (n k)xn?kyk integer n ? 0. Binomial series.



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

k?0 qk est la suite des sommes partielles : S0 = 1 S1 = 1 + q S2 = 1 + q + q2 k=0 uk à une série convergente ou à sa somme 1 2 Série géométrique



[PDF] Calcul Algébrique

Ce chapitre est consacré à la manipulation de formules algébriques constituées de variables formelles de réels ou de complexes



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · k + 1 les parenthèses font toute la différence • n C k=0 22k (n + 1 termes) et 2n C k=0 2k (2n + 1 termes) Propriété 1 : Relation de 



[PDF] LE SYMBOLE DE SOMMATION

1 Somme simple Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes Ce symbole est généralement accompagné d'un 



[PDF] Sommes et séries - Maths ECE

Pour x = 1 calculer (1 ? x)? n k=0 kxk et en déduire ? n k=0 kxk Dérivation Pour les sommes finie ! x ? x0 se dérive en x ? 0 Calculer ? n k=1





[PDF] Sommes et produits

Après un changement d'indice le nombre de termes dans la somme doit rester inchangé ! Exemples : E 1 p X k=2



[PDF] CALCULS ALGÉBRIQUES Sommes et produits finis

k=1 k3 = n2(n + 1)2 4 Exercice 3 : Soit n ? N 1 En utilisant l'égalité n+1 ? k=1 k2 = n+1 ? k=1 ((k ? 1) + 1)2 et en développant le second



[PDF] Séries numériques - Licence de mathématiques Lyon 1

Exercice 14 Etudier la nature des séries de terme général et calculer leur somme : 1 ( ) 2

  • Comment calculer ? ?

    ? [terme général d'une suite arithmétique] = [nombre de termes] × [premier terme] + [dernier terme] 2 .
  • Comment calculer la somme Sigma ?

    Somme simple
    Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on fait varier de façon à englober tous les termes qui doivent être considérés dans la somme.
  • Comment calculer la somme de K ?

    k = n (n + 1) 2 . La variable k est appelée indice de la somme; on utilise aussi fréquemment la lettre i comme variable d'indice.
  • Deux séries sont dites de même nature lorsqu'elles sont toutes les deux convergentes ou toutes les deux divergentes. Déterminer la nature d'une série c'est déterminer si elle converge ou si elle diverge. vn converge.

Math 431 - Real Analysis I

Solutions to Homework due December 5

Question 1.

(a) Letak;bk0 for allk. Show that if1X k=0a kconverges andbkis a bounded sequence, then1X k=0a kbk converges as well. (b) Find a counterexample to above statement if the hypothesis \ak;bk0" is removed.

Solution 1.

(a) Sincebkis a bounded sequence, we have thatjbkj Mfor someM. Sincebk0< we have thatbkM for allk. Sinceak0, we have that

0akbkMak:

Notice that sinceP1

k=0akconverges, thenP1 k=0Makconverges as well. Thus, by the Comparison

Test, we have that1X

k=0a kbk converges as well. (b) Consider the convergent sequence 1X k=1a k=1X k=1(1)k1k and the bounded sequencebk= (1)k. Notice that the sequenceakbk=1k , but 1 X k=11k diverges.Question 2.Show that1X k=21k(lnk)p converges if and only ifp >1.

Solution 2.We will show thatP1

k=21k(lnk)pconverges if and only ifp >1 by using the integral test.

Consider the function

f(x) =1x(lnx)p dened forx2. Notice thatf(x)0 for allx2 and that

01x(lnx)p1x

Thus, by the Squeeze Theorem, we have that lim

x!1f(x) = 0. Furthermore, notice that ifxy, then (ln(x))p(ln(y))p:Thus, we get thatx(lnx)py(lny)p. Thus, f(y) =1y(lny)p1x(lnx)p=f(x): 1

Thus,fis a decreasing function. So, we can apply the integral test. Notice that lettingu= lnxanddu=dxx

we have thatZ1

2dxx(lnx)p= limb!1Z

b

2dxx(lnx)p= limb!1Z

lnb ln2duu p:

Ifp= 1, then the above integral evaluates to

lim b!1lnjlnbj ln2 =1:

Ifp6= 1, then the above integral evaluates to

lim b!1b

1p1p+1p1:

This will converge if and only ifp <1.

Thus, by the integral test, our series converges if and only ifp >1.Question 3. (a) Give an example of a divergent series P1 k=1akfor whichP1 k=1a2kconverges. (b) Prove that ifak0 andP1 k=1akconverges, thenP1 k=1a2kconverges as well. (c) Find a counterexample to the above statement if the hypothesis \ak0" is removed.

Solution 3.

(a) Consider the divergent series 1X k=11k

Notice that

1X k=11k 2 converges. (b) Since P1 k=1akconverges, thenak!0 by the Divergence Test. Thus, there exists someNsuch that for alln > N,jan0j<1, and thusan<1. So, for alln > N,an<1 and thusa2n< an. Thus, by the

Generalized Comparison Test, sinceP1

k=1akconverges, thenP1 k=1a2kconverges as well. (c) Consider the alternating series 1X k=1(1)kpk which converges by the Alternating Series Test. Squaring the terms, we get that X k=11k diverges. 2 Question 4.In this question, we will show that if both 1 X k=0a

2kand1X

k=0b 2k converges, then 1X k=0a kbk converges absolutely. (a) Show that 2jakbkj a2k+b2kfor allk. (b) Use (a) to show that if P1 k=0a2kandP1 k=0b2kconverges, thenP1 k=0akbkconverges absolutely.

Solution 4.

(a) Notice that (akbk)20. Thus, we have thata2k2akbk+b2k0. Rewriting, we get that

2akbka2k+b2k:

Similarly, consider (ak+bk)20. Thus, we have thata2k+ 2akbk+b2k0. Re-writing, we have that (a2k+bk)22akbk: Putting these two inequalities together, we have that (a2k+bk)22akbka2k+b2k; which is equivalent to our desired result. (b) Since P1 k=0a2kandP1 k=0b2kconverges, their sum also converges and is, in fact, equal toP1 k=0a2k+b2k. Since 0<2jakbkj a2k+b2k, by the Comparison Theorem, we have that 1 X k=02jakbkj converges, and thus 1X k=0jakbkj converges. Thus, 1X k=0a kbk

converges absolutely.Question 5.Letanbe a sequence of non-zero real numbers such that the sequencean+1a

nof ratios is a constant sequence. Show thatP1 k=1akis a geometric series.

Solution 5.Let's assume thatan+1a

nis equal to the constant sequencer. Then, we have that for alln, a n+1a n=r 3 and thusan+1=ran. This gives a recursive denition ofan. So, assume thata0=c. Then,a1=ra0=cr. Similarlya2=ra1=cr2. Continuing in this way (using induction), one can see thatan=crn. Thus,P1 k=0ak=P1

k=0crk, a geometric series.In class, we learned of the following denition for thelimit superiorandlimit inferiorof a sequencexn.

Suppose a numberUhas the following two properties: For all" >0, there exists anNsuch that for alln > N,xn< U+"; and For all" >0 andm >0, there exists ann > msuch thatxn> U".

Then, limsupxn=U.

Similarly, suppose that a numberLhas the following two properties: For all" >0, there exists anNsuch that for alln > N,xn> L"; and For all" >0 andm >0, there exists ann > msuch thatxn< L+":

Then liminfxn=L.

Question 6.Letxnbe a sequence. If liminfxn=A= limsupxn, show thatxnconverges and that, in fact,xn!A. Solution 6.Let" >0. Since liminfxn=A, then there exists anNsuch that for alln > N,xn> A". Since limsupxn=A, then there exists anN+such that for alln > N+,xn< A+". Choose N= maxfN;N+g. Then, for alln > N, we have thatA" < xn< A+";which is equivalent to jxnAj< ". So,xn!A.Question 7.Consider the series1X k=1pk+ 1pk: (a) Show that pk+ 1pk=1pk+ 1 +pk (b) Use (a) to decide if the series converges or diverges.

Solution 7.

(a) If we take our term and multiply by a special form of 1, we get pk+ 1pkpk+ 1 +pkpk+ 1 +pk =k+ 1kpk+ 1 +pk =1pk+ 1 +pk 4 (b) We can now limit compare our terms to 1pk to get

1pk+1+pk

1pk =pkpk+ 1 +pk =1q k+1k + 1=12

Thus, since

1X k=11pk

diverges by thep-series test, we have that our original series diverges as well.Question 8.Consider the series1X

k=1a kwhere a k=2(1)k3 k (a) Compute ak+1a k for generalk. Use this to compute limsup a k+1a k and liminfa k+1a k Can you use the Ratio Test to reach a conclusion about the convergence or divergence of the series? (b) Computejakj1=kfor generalk. Use this to computequotesdbs_dbs7.pdfusesText_13
[PDF] les formes poétiques

[PDF] somme sigma mathématique

[PDF] sigma k

[PDF] resultat tpe 2016

[PDF] inventer une ruse de renart

[PDF] que signifie le mot roman au moyen age

[PDF] pierre de saint cloud

[PDF] auteurs du roman de renart

[PDF] roman de renart texte

[PDF] notation a b c d e sur 20

[PDF] les formes poétiques pdf

[PDF] notation anglaise scolaire

[PDF] les registres poétiques

[PDF] systeme de notation quebecois

[PDF] genre poétique caractéristiques