[PDF] Résistance des matériaux : élasticité méthodes énergétiques





Previous PDF Next PDF



Résistance Des Matériaux

11 nov. 2020 Résistance des matériaux : cours exercices corrigés. Sciences sup. Dunod



Travaux dirigés de résistance des matériaux

Corrigé TD 2. EXERCICE 1 : 1- Traction –extension-Allongement. 2- Calcul de la valeur de la contrainte :.



Résistance des matériaux Cours et exercices corrigés

Cours et exercices corrigés. La Résistance des matériaux RDM est une partie de la mécanique des solides. Elle s'intéresse à l'étude de manière théorique



RESISTANCE DES MATERIAUX

La statique et la résistance des matériaux constituent l'outil Exercice 4 : Trouver l'effort tranchant dans la goupille du système suivant. Solution.



Résistance des matériaux : élasticité méthodes énergétiques

20 juin 2011 Résistance des matériaux : élasticité méthodes énergétiques



Calcul des structures hyperstatiques Cours et exercices corrigés

Cours et exercices corrigés La résistance des matériaux aussi appelée RDM



RDM 1ère année ENTPE Résistance des matériaux – partie 1

Résistance des matériaux – partie 1. Corrections des exercices Corrigés RDM ENTPE partie 1 http://www.csb.bet ... Hypothèses du cours de R.D.M. .



CORRIGE

Mécanique du solide : Niveau 2-la résistance des matériaux @ Serge Muret 2010. 13. 3 - Applications exercice 1 : Quelle est la contrainte ?t d'une pièce de 



Untitled

Résistance des matériaux. Cours et exercices corrigés. Cahiers de la résistance des matériaux. B. Bourgeois E. Anant. Bac STI



Résistance des

matériaux. Cours et exercices corrigés 3.1. but de lA résistAnce des mAtériAux . ... 4.5. exercice : Arc symétrique à trois ArticulAtions ........... 53.



Résistance des matériaux- Cours-Résumés-TP-Exercices - F2School

Résistance des matériaux est la science du dimensionnement Liens de téléchargement des exercices corrigés de Résistance des matériaux (RDM)



[PDF] Résistance des matériaux Cours et exercices corrigés

Cours et exercices corrigés La Résistance des matériaux RDM est une partie de la mécanique des solides Elle s'intéresse à l'étude de manière théorique 



[PDF] Travaux dirigés de résistance des matériaux - Technologue pro

Travaux dirigés de résistance des matériaux 1 Sommaire : TD1 : Torseur de cohésion Corrigé TD 1 36 Corrigé TD 2 40 Corrigé TD 3 EXERCICE 3



[PDF] Résistance Des Matériaux

Résistance des matériaux : cours exercices corrigés Sciences sup Dunod 1999 [2] Romary at French Wikipedia Eprouvettes de traction en alliage d'aluminium



[PDF] RDMpdf - RESISTANCE DES MATERIAUX - univ-biskradz

Cet ouvrage traite les fondements de la résistance des matériaux Il expose profondément les notions de tenseurs une partie très utile pour les calculs en 



exercices corrigés résistance des matériaux - Genie Civil PDF

29 oct 2019 · exercices corrigés résistance des matériaux Sommaire : TD1 : Torseur de cohésion 2 TD2 : Traction – compression 6 TD3 : Cisaillement 9



Résistance des matériaux – Cours et exercices corrigés

29 nov 2019 · Telecharger Résistance des matériaux - Cours et exercices corrigés pdf Télécharger Cours et exercices corrigés RDM pdf gratuit



70 exercices corrigées en RDM avec cours en pdf à télécharger

22 fév 2019 · La résistance des matériaux (RDM) est une discipline clé de l'ingénierie et de la mécanique Elle permet d'analyser les forces qui agissent 



[PDF] Résistance des matériaux - IUT Le Mans

20 jui 2011 · Résistance des matériaux : élasticité méthodes énergétiques méthode des éléments finis Rappels de cours et exercices avec solutions



[PDF] RDM 1ère année ENTPE Résistance des matériaux – partie 1 - CSB

Calcul Structure Bâtiment Page Corrigés RDM ENTPE partie 1 http://www csb bet 13/93 4 Hypothèses du cours de R D M 4 1 Réponse exercice [ 10 ]

  • Comment calculer la résistance de matériaux ?

    En introduisant le moment d'inertie de surface : on exprime la variation de courbure due au moment fléchissant par 1/? = M/EI. La contrainte s'en déduit immédiatement par la relation ? = ? (M/I)y.
  • Comment calculer la contrainte en RDM ?

    A la contrainte normale ?=My/I s'ajoute des contraintes tangentielles. Déformée et calcul des fl?hes : sous l'effet des forces qui lui sont appliquées une poutre se déforme. On appelle fl?he à l'abscisse x le déplacement vertical du centre de gravité de la section relative à cette abscisse.
  • Quelle sollicitation est soumise la poutre ?

    Une poutre est sollicitée en traction simple ( en compression ) lorsqu'elle est soumise à deux forces directement opposées, appliquées au centre des surfaces extrêmes, qui tendent à l'allonger ( à la raccourcir).
  • But de la résistance des matériaux
    La résistance des matériaux est l'étude de la ré déformation des solides. Elle permet de définir les formes, les dimensions et les matériaux des pi?s mécaniques de façon à maîtriser leur résistance, leur déformation tout en optimisant leur coût.

R´esistance des mat´eriaux :

´elasticit´e,

m´ethodes ´energ´etiques, m´ethode des ´el´ements finis

Rappels de cours

et exercices avec solutions

Yves Debard

Institut Universitaire de Technologie du Mans

D´epartement G´enie M´ecanique et Productique

20 juin 2011

Table des mati`eres

1

´Elasticit´e

1

1.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 D´eplacements et d´eformations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Contraintes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Loi de comportement ou loi constitutive

. . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Cas particulier : ´etat de contraintes planes

. . . . . . . . . . . . . . . . . . . . . 3

1.1.5 Formules math´ematiques

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 M´ethode des ´el´ements finis : approche r´esistance des mat´eriaux

25

2.1 Rappels : r´esolution d'un probl`eme stationnaire

. . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Partition des degr´es de libert´e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Calcul des d´eplacements inconnus

. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Calcul des r´eactions d'appui

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Poutre soumise `a un effort normal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Treillis plans `a noeuds articul´es

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Poutre soumise `a un moment de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Flexion des poutres `a plan moyen : mod`ele de Bernoulli

. . . . . . . . . . . . . . . . . 58

2.5.1 Rappels : flexion dans le plan{xy}

. . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 M´ethodes ´energ´etiques : poutres

83

3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Expression de l'´energie de d´eformation en fonction des forces appliqu´ees : for-

mule de Clapeyron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.2 Th´eor`eme de r´eciprocit´e de Maxwell-Betti

. . . . . . . . . . . . . . . . . . . . . 83

3.1.3 Th´eor`eme de Castigliano

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.4 Th´eor`eme de M´enabr´ea

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.5

´Energie de d´eformation d'une poutre

. . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.6 Formules math´ematiques utiles

. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IIExercices de resistance des materiaux

4 M´ethode des ´el´ements finis

121

4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.1

´Energie de d´eformation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.2

´Energie cin´etique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.1.3

´Energie potentielle et ´el´ements finis

. . . . . . . . . . . . . . . . . . . . . . . . 123

4.1.4 Modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Assemblage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.2 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 126

4.2.3 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.4 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.5 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 132

4.2.6 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 134 4.2.7 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 137

4.2.8 Exercice : modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2.9

´El´ement fini de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.10

´El´ement fini de flexion : mod`ele de Bernoulli . . . . . . . . . . . . . . . . . . . 144

4.2.11 Exercice : ´elasticit´e plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapitre 1

Elasticit´e

1.1 Rappels

Les d´eplacements et les d´eformations sont petits.

1.1.1 D´eplacements et d´eformations

Vecteur d´eplacement :

⃗u=---→M0M ,{u}= u(x,y,z) v(x,y,z) w(x,y,z) (1.1.1)

Tenseur des d´eformations :

xx1 2

γxy1

2

γxz

1 2

γxyεyy1

2

γyz

1 2

γxz1

2

γyzεzz

,[ε]T= [ε](1.1.2) xx=∂u ∂x , εyy=∂v ∂y , εzz=∂w ∂z (1.1.3a) xy=∂u ∂y +∂v ∂x , γxz=∂u ∂z +∂w ∂x , γyz=∂w ∂y +∂v ∂z (1.1.3b) Allongement unitaire enMdans la direction{n}= n x n y n z

ε(M,⃗n) ={n}T[ε(M)]{n}

Glissement enMdans les directions orthogonales⃗naet⃗nb: γ(M,⃗na,⃗nb) = 2{nb}T[ε(M)]{na},{nb}T{na}= 0(1.1.5)

Variation relative de volume :

V(M) = tr[ε] =εxx+εyy+εzz(1.1.6)

2Exercices de resistance des materiaux

1.1.2 Contraintes

Vecteur contrainte sur la facette⃗nenM:

T(M,⃗n) =σn⃗n+⃗τn(1.1.7a)

Soit{n}=

n x n y n z un vecteur unitaire enM. Le vecteur contrainte sur la facette⃗nenMest donn´e par la formule de Cauchy : T x T y T z xxσyxσzx xyσyyσzy xzσyzσzz n x n y n z ,{T}= [σ(M)]{n}(1.1.8) o`u [σ(M)] est le tenseur des contraintes enM.

Le tenseur des contraintes est sym´etrique :

[σ] = [σ]Tsoitσxy=σyx, σxz=σzx, σyz=σzy(1.1.9)

La contrainte normale sur la facette⃗nest :

n={n}T[σ]{n} =n2xσxx+n2yσyy+n2zσzz+ 2nxnyσxy+ 2nxnzσxz+ 2nynzσyz(1.1.10) Soientσ1,σ2etσ3les trois contraintes principales en un pointMd'un solide. Les crit`eres de

Rankine, Von Mises et de Tresca s'´ecrivent :

1 2

1.1.3 Loi de comportement ou loi constitutive

Si le mat´eriau est isotrope, la loi de comportement s'´ecrit : xx=1 E (σxx-ν(σyy+σzz)) yy=1 E (σyy-ν(σxx+σzz)) zz=1 E (σzz-ν(σxx+σyy))(1.1.12a) xy=σxy G , γxz=σxz G , γyz=σyz G , G=E

2(1 +ν)(1.1.12b)

o`uEetνsont respectivement le module de Young et le coefficient de Poisson du mat´eriau.

Elasticite3

1.1.4 Cas particulier : ´etat de contraintes planes

Le tenseur des contraintes se r´eduit `a :

xxσxy0 xyσyy0

0 0 0

(1.1.13) d'o`u l'expression du tenseur des d´eformations : xx1 2

γxy0

1 2

γxyεyy0

0 0εzz

(1.1.14) et de la loi de comportement : xx=E

1-ν2(εxx+ν εyy), σyy=E

1-ν2(εyy+ν εxx)

zz=-ν E (σxx+σyy), σxy=Gγxy, G=E

2(1 +ν)(1.1.15)

Les contraintes et les d´eformations principales sont : 1 2} =σxx+σyy 2 ±1 2 (σxx-σyy)2+ 4σ2xy, σ3= 0(1.1.16) 1 2} =εxx+εyy 2 ±1 2 (εxx-εyy)2+γ2xy, ε3=εzz(1.1.17)

Les directions principales sont :

{n1}= cosθ1 sinθ1

0

,{n2}= -sinθ1 cosθ1

0

,{n3}= 0 0

1

avec tanθ1=σ1-σxx xy(1.1.18) Les crit`eres de Rankine, Von Mises et de Tresca se r´eduisent `a : L'allongement unitaire enMdans la direction{n}= n x n y

0

se r´eduit `a : ε(M,⃗n) ={n}T[ε(M)]{n}=n2xεxx+n2yεyy+nxnyγxy(1.1.20)

4Exercices de resistance des materiaux

1.1.5 Formules math´ematiques

Valeurs et vecteurs propres d'une matrice sym´etrique de dimension deux `a coefficients r´eels :

Consid´erons la matrice sym´etrique [S] :

[S] =[SxxSxy S xySyy] ,([S]T= [S])(1.1.21) Les valeurs propresSn=1,2et les vecteurs propres{n}sont les solutions de l'´equation : [S]{n}=Sn{n},[SxxSxy S xySyy]{ nx n y} =Sn{nx n y} avecn2x+n2y= 1(1.1.22) soit :

Sxx-SnSxy

S xySyy-Sn]{ nx n y} ={0 0} (1.1.23) Cette ´equation n'a de solution autre que la solution trivialenx=ny= 0 que si et seulement si : det [Sxx-SnSxy S xySyy-Sn] = 0(1.1.24) d'o`u l'´equation caract´eristique : S

2n-(Sxx+Syy)|

{z tr[S]=S1+S2S n+SxxSyy-S2xy| {z det[S]=S1S2= 0(1.1.25) et les valeurs propres : S 1 S 2} =Sxx+Syy 2 ±1 2 (Sxx-Syy)2+ 4S2xy(1.1.26)

Les vecteurs propres associ´es sont :

{n1}={cosθ1 sinθ1} ,{n2}={cosθ2 sinθ2} ={-sinθ1 cosθ1} (1.1.27) avec : tanθ1=S1-Sxx S xy,tanθ2=S2-Sxx S xy(1.1.28) Remarque: les deux directions principales sont orthogonales : |θ1-θ2|=π 2 ,tan2θ1= tan2θ2=2Sxy S xx-Syy,tanθ1tanθ2=-1 (1.1.29) D´eterminant d'une matrice carr´ee sym´etrique de dimension 3 : det S

11S12S13

S

21S22S23

S

31S32S33

=S11det[S22S23 S

32S33]

-S21det[S12S13 S

32S33]

+S31det[S12S13 S

22S23]

=S11S22S33-S11S223-S33S212-S22S213+ 2S12S13S23(1.1.30)

Elasticite5

Formules trigonom´etriques :

tanφ=sinφ cosφ,cos(-φ) = cosφ ,sin(-φ) =-sinφ(1.1.31) cos(φ1+φ2) = cos(φ1) cos(φ2)-sin(φ1) sin(φ2)(1.1.32) sin(φ1+φ2) = sinφ1cosφ2+ cosφ1sinφ2(1.1.33) cos

2φ=1 + cos2φ

2 ,sin2φ=1-cos2φ 2 ,sinφcosφ=sin2φ 2 (1.1.34) cos 2 = sinφ(1.1.35) cos45 ◦= sin45◦=1 2 2 2 ,cos60◦=1 2 3 2 (1.1.36) cos120 ◦=-1 2 3 2 (1.1.37)

Sixetysont petits devant l'unit´e :

|x|≪1,|y|≪1(1.1.38a) on a les relations :

1 +x≃1 +x

2 ,1

1 +x≃1-x ,(1 +x)(1 +y)≃1 +x+y(1.1.38b)

sinx≃x ,cosx≃1-x2 2 ,tanx≃x(1.1.38c)

6Exercices de resistance des materiaux

1.2 Exercices

ELA

1 : vecteur contrainte sur une facette

En un pointMd'un solide, dans le rep`ere orthonorm´e{⃗ı,⃗ȷ,⃗k}, le tenseur des contraintes a pour

valeur : [σ(M)] = 100-40 20 -40-60 50

20 50 40

MPa 1. Faire un dessin qui montre la signification physique des composantes du tenseur des contraintes. 2.

Soit le vecteur unitaire⃗nde composantes :

{n}=1 3 1 2

2

Sur la facette⃗n:

(a)

Calculer les composantes du vecteur contrainte

⃗T(M,⃗n). (b)

Calculer la contrainte normaleσn.

(c) Calculer les composantes du vecteur cisaillement⃗τn, puis le moduleτndu cisaillement.

Solution

Repr´esentation graphique des composantes du tenseur des contraintes Les composantes en MPa du tenseur des contraintes dans le rep`ere{⃗ı,⃗ȷ,⃗k}: composantes sur ⃗k 100-40 20 -40-60 50

205040

sont repr´esent´ees sur la figure ci-dessous.quotesdbs_dbs41.pdfusesText_41
[PDF] formule contrainte flexion

[PDF] manuel utilisateur samsung s7

[PDF] formulaire moment quadratique

[PDF] avis d'interruption de travail et demande d'indemnités journalières cnss

[PDF] mise en route galaxy s7 edge

[PDF] formulaire cnss maternité

[PDF] نموذج شهادة الانقطاع عن العم&#

[PDF] mode d'emploi samsung galaxy j7

[PDF] شهادة الانقطاع عن العمل cnss

[PDF] ????? ????? ???????? ?? ????? ???????

[PDF] accident de travail cnss maroc

[PDF] formulaire cnss maladie maroc

[PDF] remboursement cnss maternité

[PDF] pass navigo expiré

[PDF] pass navigo je gère ma carte