[PDF] TD 1 Intégrales généralisées





Previous PDF Next PDF



Chapitre 7 : Intégrales généralisées

On parlera d'intégrale généralisée ou bien d'intégrale impropre. les sous-suites d'une suite convergente convergent vers la même limite donc les deux ...



TD 1 Intégrales généralisées

16 sept. 2016 En somme quelles fonctions sont susceptibles d'intégration ? ... En pratique



Intégrales impropres

Nous allons apprendre ici à calculer les intégrales de domaines non bornés soit parce que l'intervalle d'intégration est infini. (allant jusqu'à +? ou ??)



Résumé sur les Intégrales Impropres & exercices supplémentaires

Par conséquent dans la suite on ne consid`ere que le cas des fonctions positives. Crit`ere de la convergence majorée. Si f est positive alors l'intégrale. ? b.



Exercices de mathématiques - Exo7

(Hors programme) Etudier la convergence des intégrales impropres suivantes : Soit f de classe C1 sur R+ à valeurs dans R telle que l'intégrale / +?.



TD n 8 : Intégrales impropres

(d) Donner l'allure de la courbe représentative de F. Exercice 4. Ecricome 1997 (suite). Soit ? un réel tel que ? > 1. Pour tout n ? N on pose 



Chapitre 2 - Intégrales généralisées (ou impropres)

Pour montrer la divergence d'une intégrale il suffit alors d'exhiber une suite (xn) qui converge vers b telle que la série (2.1) soit divergente. 2.4 



Calcul Intégral et Différentiel

Théorème 3.9 (Formule de changement de variables pour les intégrales impropres). Soient a<b c<d quatre réels



Cours danalyse ECS deuxième année

2 sept. 2012 1.3.2 Suites définies par une récurrence linéaire d'ordre k (k > 1) . ... 3.7 Techniques de calcul des intégrales impropres .



Intégrales impropres 1 Extension par continuité

On supposera donc connues la définition et les principales propriétés de l'intégrale d'une fonction continue



Exo7 - Cours de mathématiques

Intégrales impropres Vidéo — partie 1 Définitions et premières propriétés Vidéo — partie 2 Fonctions positives Vidéo — partie 3 Fonctions oscillantes Vidéo — partie 4 Intégrales impropres sur un intervalle borné Vidéo — partie 5 Intégration par parties Changement de variable 1 Dé?nitions et premières propriétés



Calcul intégral Exercices corrigés

Pour les int´egrales impropres on va proc´eder comme pour les s´eries : on disposera d’une liste de cas types pour lesquels la nature de l’int´egrale est connue et on traitera les autres cas par des th´eor`emes de comparaisons ou des techniques plus ?nes



Suites limites intégrales impropres - sorbonne-universitefr

3 2 Integrales impropres On note C0([a;b];R) l’ensemble des fonctions continues : [a;b] à valeurs dans R (On rappelle que f: I!R estcontinueenunpointx 0 2Isilim x!x 0;x2If(x) estbiendé?nie ElleestcontinuesurIsi elleestcontinueentoutpointx 0 deI Danslecasoùf2C0([a;b];R)où[a;b] estdoncunsegmentdeRl’intégrale R b a f(x)dxesttoujours



Calcul intégral Exercices corrigés - Meabilis

1 20 Intégrale et suite 5 23 1 21 Méthode d’Euler Am du Nord 2006 23 1 22 Equa diff intégrale volume Am du Sud 2004 26 1 23 Equa diff + fonction+intégrale Antilles 2001 28 1 24 La chaînette 31 1 25 Primitive de ln 37 1 26 Equation différentielle 38 1 27 Equation différentielle et primitive 39 1 28



Chapitre 28 : intégrales impropres

Chapitre 28 : intégrales impropres 1 Définitions Définition 1 1 Soit f une fonction définie sur un intervalle[a;b[ avec ??

Quels sont les exercices corrigés de calcul intégral?

Calcul intégral Exercices corrigés 1. 1. Calcul de primitives 1 1. 2. Basique 1 1 1. 3. Basique 2 2 1. 4. Centre de gravité (d’après bac pro) 2 1. 5. QCM 1 3 1. 6. QCM 2 3 1. 7. QCM 3 4 1. 8. Calcul d’intégrales, fonction rationnelle 5 1.

Comment calculer l’intégrale d’un plan?

1. Comme m?0 et que fest positive sur [m; 0] , l’intégrale en question est l’aire de la partie de plan comprise entre l’axe des abscisses, la courbe (C) et les droites d’équation (x = m) et (x= 0). 2. a. Faisons, comme suggéré par l’énoncé, une intégration par parties : ( ) '( ) 1 '( ) ( )x x

Quels sont les différents types d’intégrales ?

Différents types d’intégrales : intervalle non borné,fonction de signe constant; intervalle non borné,fonction oscillante; intervalle borné, fonction de signe constant; intervalle borné, fonction oscillante.

Qu'est-ce que l'intégrale impropre ?

Ici, les fonctions considérées sont des fonctions àvaleurs réelles ou complexes continues et l’intégration est faite sur des intervalles du type [a,b[,]a,b], ]a,b[ avec a ou b qui peuvent prendre¥comme valeurs. Dé?nition 1.1 — intégrale impropre. On dit que l’intégraleRaf(t)dt est impropre dans lescas suivants :

Analyse T4, TD n° 1 / Vendredi 16 septembre 2016

Intégrales généralisées

1. Résumé de cours.

2. Exercices.

Pierre-Jean Hormière

____________ " Si vous avez tout compris, c"est que je n"ai pas été clair. »

Albert Einstein

1. Résumé de cours.

1.1. Intégration sur un segment

On nomme segment un intervalle fermé borné de la droite réelle R. Soient I = [a, b] un segment de R, f une fonction I ® R. Si f est à valeurs positives, on appelle intégrale de f sur le segment I l"aire du domaine

D = { (x, y) Î I´R ; 0 £ y £ f(x) }.

On note alors

b adxxf).( = Aire(D). Si f est à valeurs réelles, on appelle intégrale de f sur le segment I la différence de l"aire du domaine D + = { (x, y) Î I´R ; 0 £ f(x) et 0 £ y £ f(x) } et de l"aire du domaine D - = { (x, y) Î I´R ; f(x) £ 0 et f(x) £ y £ 0 }

On note alors

b adxxf).( = Aire(D+) - Aire(D-).

Il s"agit de l"aire algébrique située entre l"axe Ox et le graphe de f. L"aire arithmétique est alors

donnée par b adxxf.)( = Aire(D+) + Aire(D-). Oui, mais comment définir et calculer cette aire, ces aires ? Cette aire, ces aires, sont-elles toujours définies ? En somme, quelles fonctions sont susceptibles d"intégration ?

Pendant vingt siècles, d"Eudoxe et Archimède à Pascal, les mathématiciens considéraient une

subdivision de I, s = (a = x

0 < x1 < ... < xn = b), calculaient la somme des aires des tuyaux d"orgue

S = 1 0 1)()( n k kkkfxxx, où pour chaque indice k, xk est un point quelconque du segment [xk, xk+1], puis faisaient tendre le pas de la subdivision s, c"est-à-dire |s| = max (x k+1 - xk), vers 0. On démontre que si f est continue, ou continue par morceaux, alors les sommes S ont une limite,

et c"est cette limite que l"on nomme intégrale de f sur I. Pour des fonctions plus générales les

sommes S n"ont pas toujours de limite, et donc l"intégrale n"existe pas toujours.

Ainsi, pour calculer l"aire

b adxx². du domaine D = { (x, y) Î I´R ; 0 £ y £ x2 }, Archimède calcule la somme S = 1 0 1)()( n k kkkfxxx = nab-²))(( 1

0∑

n kabnka , puis fait tendre n vers 0. Il trouve 3

33ab-.

Essayez !...

Jusqu"en 1664, les mathématiciens n"avaient pas d"autre moyen de calculer des intégrales. La

méthode était longue, fastidieuse, et ne fonctionnait que sur un nombre limité de fonctions. En 1665,

Newton et Leibniz ont découvert indépendamment une méthode révolutionnaire pour calculer

2 l"intégrale d"une fonction continue. Pour calculer∫ b adxxf).(, il suffit de disposer d"une primitive de f, c"est-à-dire d"une fonction F dont la dérivée est f. Et alors b adxxf).( = F(b) - F(a).

Ce théorème de Newton-Leibniz est aussi appelé théorème fondamental du calcul différentiel et

intégral, car il établit un pont entre calcul différentiel et calcul intégral. Le calcul d"une intégrale se

ramène au calcul d"une primitive, c"est-à-dire d"une " antidérivée ». Ce théorème a fait faire à

l"analyse un bon spectaculaire au 18 ème siècle. Cependant il s"est heurté à deux sortes de difficultés :

· Si toute fonction continue f a bien une primitive F, c"est-à-dire est une dérivée de F, les fonctions

continues élémentaires, c"est-à-dire sommes, produits, quotients, composées de fonctions usuelles

(fonctions rationnelles, logarithmes, exponentielles, puissances, sinus, cosinus, Arcsin, Arccos,

Arctan, etc) n"ont pas toujours de primitives élémentaires. On peut alors enrichir le bestiaire des

fonctions connues en lui adjoignant de nouvelles fonctions, exponentielles-intégrales, elliptiques,

etc., mais cela demande du travail et de l"érudition.

· On a besoin d"intégrer des fonctions plus générales que les fonctions continues ou continues par

morceaux à valeurs réelles : fonctions à valeurs complexes ou vectorielles, fonctions discontinues.

Riemann, Darboux, Lebesgue, Kurzweil, Henstock, etc., se sont attelés à ces généralisations.

1.2. Calculs d"intégrales et de primitives

Les deux méthodes principales pour calculer intégrales et primitives sont le changement de variables

et l"intégration par parties.

Proposition 1 : Soit F une fonction de classe C

1 de I = [a, b] dans R. Pour toute fonction f continue

de J = F(I) dans E, on a : F F)( b adxxf = ∫FF b adtttf)."()).((.

Preuve

: Les fonctions y ®∫ F F)( y adxxf et y ®∫FF y adtttf)."()).(( sont définies et de classe C1 sur

[a, b], la première en tant que composée. Elles ont même dérivée f(F(y)).F"(y) et même valeur en a.

Remarque

: En pratique, ce théorème s"utilise dans les deux sens :

¾ dans le sens

∫FF b adtttf)."()).(( =∫ F F)( b adxxf , il suffit de poser x = F(t) et le changement de variable " se fait tout seul » dans la forme différentielle w = f(F(t)).F"(t).dt = f(x).dx.

Exemples :

∫FF b adttt).(").( = 2 )²()²(abF-F, ∫F Fb adttt.)()(" = ln |)(bF| - ln |)(aF| , ∫+F Fb adttt.1)²()(" = Arctan )(bF - Arctan)(aF, etc.

¾ dans le sens

b adxxf).( = ∫FF b adtttf)."()).((, où a = F-1(a) et b = F-1(b), il faut s"assurer que

F est C

1 et strictement monotone.

Exemples : calculer

∫-dxx.²1 , ∫+dxx.²1 et ∫-dxx.1². Proposition 2 : Soient u et v deux fonctions [a, b] ® C de classe C

1 ; on a :

b adxxvxu)."().( = []b axvxu)().( - ∫ b adxxvxu).()."(. Preuve : u.v est une fonction de classe C1 sur [a, b], et (u.v)" = u".v + u.v".

Applications : intégrer les exponentielles-polynômes, calculs récurrents d"intégrales, intégrer

certaines fonctions transcendantes, etc. 3

1.3. Intégrales généralisées.

Si I est un intervalle quelconque, mais non un segment, y a-t-il moyen de définir ∫Idxxf).( ?

Ainsi, en quel sens peut-on affirmer que

1 0 xdx = 2 , que∫

¥--dxex.2/² = p2, etc. ?

Définitions : 1) Soient I = [a, b[ un intervalle semi-ouvert à droite, f : [a, b[ ® R une fonction

continue. On dit que l"intégrale généralisée ∫[,[).(badxxf = ∫ b adxxf).( converge si ∫ c adxxf).( a une limite quand c ® b-0. Cette limite se note alors ∫[,[).(badxxf = limc®b-0 ∫ c adxxf).(.

2) Soient I = ]a, b] un intervalle semi-ouvert à gauche, f : ]a, b] ® R une fonction continue. On dit

que l"intégrale généralisée ∫],]).(badxxf = ∫ b adxxf).( converge si ∫ b cdxxf).( a une limite quand c ® a+0. Cette limite se note alors ∫],]).(badxxf = limc®a+0 ∫ b cdxxf).(.

3) Soient I = ]a, b[ un intervalle ouvert, f : ]a, b[ ® R une fonction continue. On dit que l"intégrale

généralisée ∫[,]).(badxxf = ∫ b adxxf).( converge si ∫ d cdxxf).( a une limite quand c ® a+0 et d ® b-0 indépendamment . Cette limite double se note alors ∫[,]).(badxxf = limc®a+0,d®b-0 ∫ d cdxxf).(. On dit que l"intégrale généralisée ∫Idxxf).( est divergente si ∫ c adxxf).(, resp.∫ b cdxxf).(, resp. d cdxxf).(, sont sans limite. On ne peut alors leur attribuer de valeur.

Ces définitions s"étendent au cas où f est continue par morceaux sur tout segment [c, d] Ì I.

Remarque importante : Le symbole

∫Idxxf).( désigne deux objets bien distincts : l"intégrale impropre ∫Idxxf).(, qui peut converger ou diverger, et sa valeur, en tant que limite, en cas de convergence. Il en de même dans la théorie des séries. Quand on écrit " =1

²1nn converge et vaut

6²p », le symbole ∑

=1

²1nn désigne d"abord la série de terme général 1/n2, puis sa valeur, c"est-à-dire la

valeur exacte de lim

N®+¥ ∑

=N nn1²1, car la série converge.

Critère de troncature : Si I = ]a, b[, et c est un point quelconque tel que a < c < b, alors

∫[,]).(badxxf converge ssi ∫],]).(cadxxf et ∫[,[).(bcdxxf convergent, et alors : ∫[,]).(badxxf = ∫],]).(cadxxf + ∫[,[).(bcdxxf. En pratique, quand l"intégrale est impropre en a et b, étudier séparément ∫],]).(cadxxf et ∫[,[).(bcdxxf, c étant un point quelconque tel que a < c < b.

Exemples importants :

1)

0.dxex converge, et vaut 1. En effet, ∫

-Axdxe0. = 1 - Ae-® 1 quand A ® +¥.

Plus généralement

0.dxeax converge ssi a > 0, et vaut alors 1/a.

4

Exercice : Montrer que ∫

¥--dxexa. converge ssi a > 0, et vaut alors 2/a. 2) +01²xdx converge et vaut p/2. En effet, ∫+ A xdx01² = Arctan A ® p/2 quand A ® +¥.

En déduire que

+1²xdx converge et vaut p. 3)

0dx et ∫

0.sindxx divergent.

En effet,

Adx0 = A ® +¥ avec A, et ∫

Adxx0.sin = 1 - cos A est sans limite quand A ® +¥. 4) +1a tdt converge ssi a > 1.

En effet t ®

at1 est continue positive sur [1, +¥[. ∫ A a tdt1 = ln A si a = 1, aA a 11 1 sinon.

Pour a > 1,

A a tdt1 tend vers 11-a quand A ® +¥ ; sinon, elle tend vers +¥. 5) 1 0 a tdt converge ssi a < 1.

En effet t ®

at1 est continue positive sur ]0, 1]. ∫quotesdbs_dbs12.pdfusesText_18
[PDF] Intégralité - Jean - France

[PDF] intégralité au format PDF - Archives de Nantes

[PDF] Intégralité de l`article

[PDF] intégralité de nos formations informatiques - Conception

[PDF] Intégralité et détail des ateliers ICI - Gestion De Projet

[PDF] Integralrechnung Aufgaben Wasserbecken Bergstollen

[PDF] Integralrechnung: unbestimmte und bestimmte Integrale • f (x) dx ist

[PDF] Integramouse +

[PDF] intégrant la carte de surveillance patient - Chirurgie

[PDF] Integrated Aircraft Routing and Crew Pairing at Air France

[PDF] Integrated Alarm Systems - VdS - Design of CO2 extinguishing

[PDF] Integrated Compressed Air Foam System - Anciens Et Réunions

[PDF] Integrated Dell Remote Access Controller 7 (iDRAC7) Guide d

[PDF] Integrated Emergency Management Program Agreement

[PDF] Integrated EU approach against the illegal trafficking in