[PDF] [PDF] Géométrie dans lespace - Lycée dAdultes





Previous PDF Next PDF



Les formules et les propriétés incontournables

Les indispensables en géométrie dans l'espace. Les formules et les propriétés incontournables. Orthogonalité. Deux vecteurs sont orthogonaux si leur produit 



GEOMETRIE DANS LESPACE

4) soit par deux droites strictement parallèles. Définition : Quatre points de l'espace sont dits coplanaires lorsqu'ils appartiennent à un même plan. Deux 



Géométrie dans lespace - Lycée dAdultes

26 cze 2013 2 Géométrie vectorielle. 9. 2.1 Définition . ... 3.2 Propriétés et orthogonalité dans l'espace . ... Formule 2 : géométrie analytique.



Formules daires et de volumes (cours 3ème)

1 lut 2019 La formule est la même que pour le prisme droit. Comme la base est un disque de rayon r on a : V = 2. r r h. r h ? ?. × × × = 2.



Géométrie de lespace

Trois vecteurs u v et w de l'espace sont dits coplanaires si il existe ?



Méthodes de géométrie dans lespace Déterminer une équation

avec k réel . Cas classique. On détermine le vecteur directeur de la droite et on applique simplement la formule ci-dessus. Exemple.



LES FORMULES DE VOLUME ET LE PRINCIPE DE CAVALIERI

raisonnements notamment celui du passage de la formule de volume des prismes à celle Géométrie de l'espace



Géométrie dans lespace

13 lis 2012 maîtrise des calculs géométriques dans l'espace notamment de produit vectoriel ... formule AB = ?(xB ? xA)2 + (yB ? yA)2 + (zB ? zA)2.



Géométrie dans lespace à trois dimensions

4 lut 2016 linéaire pour faire de la géométrie. La distance euclidienne entre deux points A et B de E3 est donnée par la formule :.



PRODUIT SCALAIRE DANS LESPACE

Dans le plan les règles de géométrie plane sur les produits scalaires s'appliquent. 3) Expression analytique du produit scalaire. Propriété : Soit.



[PDF] Géométrie dans lespace - Lycée dAdultes

26 jui 2013 · 2 Géométrie vectorielle 9 2 1 Définition 3 2 Propriétés et orthogonalité dans l'espace Formule 2 : géométrie analytique



[PDF] Les indispensables en géométrie dans lespace

Les formules et les propriétés incontournables Orthogonalité Deux vecteurs sont orthogonaux si leur produit scalaire est nul



[PDF] GEOMETRIE DANS LESPACE - maths et tiques

Yvan Monka – Académie de Strasbourg – www maths-et-tiques GEOMETRIE DANS L'ESPACE I Les solides usuels (rappels du collège) 1) Les solides droits



[PDF] Géométrie dans lespace Table des mati`eres 1 Généralités

Plus généralement si -?w est combinaison linéaire de deux vecteurs alors -?u -?v et -?w sont coplanaires 1 2 Bases de l'espace DÉFINITION : 1 On 



[PDF] Géométrie dans lespace

Géométrie dans l'espace Olivier Lécluse Terminale S 1 0 Octobre 2013 Nous retrouvons dans l'espace des formules bien connues dans le plan



[PDF] Chapitre 23 : Géométrie dans lespace - Normale Sup

21 jui 2016 · maîtrise des calculs géométriques dans l'espace notamment de produit vectoriel formule AB = ?(xB ? xA)2 + (yB ? yA)2 + (zB ? zA)2



[PDF] Géométrie dans lespace - Plus de bonnes notes

21 avr 2021 · GEOMETRIE DANS L?ESPACE : COMPLEMENT I SPHERE a Définition : Soit O un point de l'espace On appelle sphère de centre O et de rayon R 



[PDF] Vecteurs et géométrie dans lespace en Terminale Générale

Cet espace est l'ensemble des points M définis par les combinaisons linéaires ??? AM = x ??? AB + y ?? AC + z ??? AD où x y et z sont des 



[PDF] 2 Géométrie dans lespace

Son volume est donné par la formule Longueur × largeur × hauteur Remarque n°2 : Le volume d'un cube de côté c est donné par la formule V = c3 ou V = c 



[PDF] Géométrie dans lespace - Mathoxnet

Définition : On dit que deux droites de l'espace sont perpendiculaires si elles sont coplanaires et sécantes en formant un angle droit Définition : On dit que 

:
[PDF] Géométrie dans lespace - Lycée dAdultes

DERNIÈRE IMPRESSION LE26 juin 2013 à 15:11

Géométrie dans l"espace

Table des matières

1 Droites et plans2

1.1 Perspective cavalière. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Le plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Relations entre droites et plans. . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Relations entre deux droites. . . . . . . . . . . . . . . . . . . 3

1.3.2 Relations entre une droite et un plan. . . . . . . . . . . . . . 3

1.3.3 Relation entre deux plans. . . . . . . . . . . . . . . . . . . . 3

1.4 Le parallélisme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Parallélisme d"une droite et d"un plan. . . . . . . . . . . . . 4

1.4.2 Parallélisme de deux plans. . . . . . . . . . . . . . . . . . . 5

1.5 Section d"un cube et d"un tétraèdre par un plan. . . . . . . . . . . . 5

1.5.1 Section d"un cube par un plan. . . . . . . . . . . . . . . . . 5

1.5.2 Section d"un tétraèdre par un plan. . . . . . . . . . . . . . . 6

1.6 L"orthogonalité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Droites orthogonales. . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Orthogonalité entre une droite et un plan. . . . . . . . . . . 7

1.6.3 Exemple d"application. . . . . . . . . . . . . . . . . . . . . . 8

2 Géométrie vectorielle9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Vecteurs coplanaires. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Le théorème du toit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Repérage dans l"espace. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Représentation paramétrique d"une droite. . . . . . . . . . . . . . . 13

2.6.1 Théorème. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 Représentation paramétrique d"un plan. . . . . . . . . . . . 15

3 Produit scalaire16

3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Propriétés et orthogonalité dans l"espace. . . . . . . . . . . . . . . . 18

3.3 Équation cartésienne d"un plan. . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Vecteur normal. Droite orthogonale à un plan. . . . . . . . 19

3.3.2 Plans perpendiculaires. . . . . . . . . . . . . . . . . . . . . . 20

3.4 Équation d"un plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Exercice de BAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

PAULMILAN1 TERMINALES

1 DROITES ET PLANS

1 Droites et plans

1.1 Perspective cavalière

Définition 1 :Laperspective cavalièreest une manière de représenter en deux dimensions des objets en volume. Cette représentation ne présente pas de point de fuite : la taille des objetsne diminue pas lorsqu"ils s"éloignent.

Dans cette perspective, deux des axes sont

orthogonaux (vue de face en vraie grandeur) et le troisième axe est incliné d"un angleα compris en général entre 30 et 60°par rap- port à l"horizontale, appelé "angle de fuite".

Les mesures sur cet axe sont multipliées par

un facteur de réductionkcompris en général entre 0,5 à 0,7.

Cette perspective ne donne qu"une indica-

tion sur la profondeur de l"objet. A BC DE F G H fuyante ← ×kα représentation du cube ABCDEFGH ?La perspective cavalièrene conserve pas: •la mesure : deux segments de même longueur peuvent être représentés par deux segments de longueurs différentes (AB?=BC); •les angles en particulier deux droites perpendiculaires peuvent être représen- tées par deux droites non perpendiculaires ((AB)??(AD)) Un carré peut être représenté par un parallélogramme (AEHD)! Deux droites peuvent se couper sur la perspective sans être sécantes en réalité! (les droites (HC) et (AG) par exemple)

Par contre, cette perspectiveconserve:

•le parallélisme : deux droites parallèles sont représentées par des droites paral- lèles; •le milieu ou tout autre division d"un segment.

1.2 Le plan

Définition 2 :Un planPpeut être défini par trois points A, B, C non alignés.

Il est alors noté (ABC).

Un plan peut être aussi défini par deux droites sécantes ou strictementparallèles.

Exemple :Dans le cube ABCDEFGH

le planPpeut être défini par : •les points A, E, C. Il peut être noté(AEC)

•les droites (EC) et (AG).

•les droites (AE) et (CG)A BC

DE FG H P

PAULMILAN2 TERMINALES

1.3 RELATIONS ENTRE DROITES ET PLANS

1.3 Relations entre droites et plans

1.3.1 Relations entre deux droites

Propriété 1 :Deux droites, dans l"espace, peuvent être : •coplanaires, si ces deux droites appartiennent

à un même plan [(AF) et (BE)];

•secantes, si ces deux droites se coupent en un point [(AB) et (AD)]; •parallèles, si ces deux droites sont coplanaires et n"ont aucun point commun ou si ces deux droites sont confondues [(AB) et (HG)];

•non coplanaires[(AB) et (DG)].A BC

DE F G H Conclusion :Deux droites peuvent être parallèles, sécantes ou non coplanaires.

1.3.2 Relations entre une droite et un plan

Propriété 2 :Une droite et un plan peuvent être :

•parallèles: si la droite et le plan n"ont

aucun point commun ou si la droite est contenue dans le plan [(EF) etP];

•sécantes: si la droite et le plan ont un

seul point commun [(HI) etP] A BC DE F G H I P

1.3.3 Relation entre deux plans

Propriété 3 :Deux plans peuvent être :

•parallèles: si les deux plans n"ont au-

cun points commun ou si les deux plans sont confondus (P1∩P2=∅)

•sécants: si les deux plans

ont une droite en commun. (P1∩P3= (BC)) A BC DE F G H P1 P2 P3

PAULMILAN3 TERMINALES

1 DROITES ET PLANS

1.4 Le parallélisme

1.4.1 Parallélisme d"une droite et d"un plan

Théorème 1 :Si une droitedest parallèle à une droiteΔcontenue dans un plan

P, alorsdest parallèle àP.

d//Δ

Δ?P?

?d//P P Δd Théorème 2 :Si un planP1contient deux droites sécantesd1etd2parallèles à un planP2, alors les plansP1etP2sont parallèles d

1?P1etd2?P1

d

1etd2sécantes

d

1//P2etd2//P2

?P1//P2 P1 P2 d1d 2 Théorème 3 :Si une droitedest parallèle à deux plansP1etP2sécants en une droiteΔalorsdetΔsont parallèles. d//P1etd//P2 P

1∩P2=Δ?

?d//Δ d P1 P2 Théorème 4 :Théorème du toit(démontration cf géométrie vectorielle) Soientd1etd2deux droites parallèles contenues respectivement dans les plans P

1etP2. Si ces deux plansP1etP2sont sécants en une droiteΔ, alors la droite

Δest parallèle àd1etd2.

d 1//d2 d

1?P1etd2?P2

P

1∩P2=Δ

??Δ//d1

Δ//d2

d1d2Δ P2 P1

PAULMILAN4 TERMINALES

1.5 SECTION D"UN CUBE ET D"UN TÉTRAÈDRE PAR UN PLAN

1.4.2 Parallélisme de deux plans

Théorème 5 :Si deux plansP1etP2sont parallèles, alors tout plan sécant à l"un est sécant à l"autre et les droites d"intersectiond1etd2sont parallèles.quotesdbs_dbs2.pdfusesText_2
[PDF] nouvelle fantastique pdf

[PDF] louison et monsieur molière livre entier

[PDF] nouvelle fantastique expression écrite

[PDF] louison et monsieur molière résumé chapitre 3

[PDF] marie christine helgerson

[PDF] formules de maths terminale s

[PDF] formules taux d'évolution

[PDF] informations chiffrées stmg

[PDF] loi binomiale formule stmg terminale

[PDF] obligatoire et spécialité

[PDF] série es

[PDF] calculatrice loi binomiale

[PDF] calcul loi binomiale

[PDF] cadre juridique de l eau au maroc

[PDF] loi 36 15 eau