[PDF] [PDF] GEOMETRIE DANS LESPACE - maths et tiques





Previous PDF Next PDF



Les formules et les propriétés incontournables

Les indispensables en géométrie dans l'espace. Les formules et les propriétés incontournables. Orthogonalité. Deux vecteurs sont orthogonaux si leur produit 



GEOMETRIE DANS LESPACE

4) soit par deux droites strictement parallèles. Définition : Quatre points de l'espace sont dits coplanaires lorsqu'ils appartiennent à un même plan. Deux 



Géométrie dans lespace - Lycée dAdultes

26 cze 2013 2 Géométrie vectorielle. 9. 2.1 Définition . ... 3.2 Propriétés et orthogonalité dans l'espace . ... Formule 2 : géométrie analytique.



Formules daires et de volumes (cours 3ème)

1 lut 2019 La formule est la même que pour le prisme droit. Comme la base est un disque de rayon r on a : V = 2. r r h. r h ? ?. × × × = 2.



Géométrie de lespace

Trois vecteurs u v et w de l'espace sont dits coplanaires si il existe ?



Méthodes de géométrie dans lespace Déterminer une équation

avec k réel . Cas classique. On détermine le vecteur directeur de la droite et on applique simplement la formule ci-dessus. Exemple.



LES FORMULES DE VOLUME ET LE PRINCIPE DE CAVALIERI

raisonnements notamment celui du passage de la formule de volume des prismes à celle Géométrie de l'espace



Géométrie dans lespace

13 lis 2012 maîtrise des calculs géométriques dans l'espace notamment de produit vectoriel ... formule AB = ?(xB ? xA)2 + (yB ? yA)2 + (zB ? zA)2.



Géométrie dans lespace à trois dimensions

4 lut 2016 linéaire pour faire de la géométrie. La distance euclidienne entre deux points A et B de E3 est donnée par la formule :.



PRODUIT SCALAIRE DANS LESPACE

Dans le plan les règles de géométrie plane sur les produits scalaires s'appliquent. 3) Expression analytique du produit scalaire. Propriété : Soit.



[PDF] Géométrie dans lespace - Lycée dAdultes

26 jui 2013 · 2 Géométrie vectorielle 9 2 1 Définition 3 2 Propriétés et orthogonalité dans l'espace Formule 2 : géométrie analytique



[PDF] Les indispensables en géométrie dans lespace

Les formules et les propriétés incontournables Orthogonalité Deux vecteurs sont orthogonaux si leur produit scalaire est nul



[PDF] GEOMETRIE DANS LESPACE - maths et tiques

Yvan Monka – Académie de Strasbourg – www maths-et-tiques GEOMETRIE DANS L'ESPACE I Les solides usuels (rappels du collège) 1) Les solides droits



[PDF] Géométrie dans lespace Table des mati`eres 1 Généralités

Plus généralement si -?w est combinaison linéaire de deux vecteurs alors -?u -?v et -?w sont coplanaires 1 2 Bases de l'espace DÉFINITION : 1 On 



[PDF] Géométrie dans lespace

Géométrie dans l'espace Olivier Lécluse Terminale S 1 0 Octobre 2013 Nous retrouvons dans l'espace des formules bien connues dans le plan



[PDF] Chapitre 23 : Géométrie dans lespace - Normale Sup

21 jui 2016 · maîtrise des calculs géométriques dans l'espace notamment de produit vectoriel formule AB = ?(xB ? xA)2 + (yB ? yA)2 + (zB ? zA)2



[PDF] Géométrie dans lespace - Plus de bonnes notes

21 avr 2021 · GEOMETRIE DANS L?ESPACE : COMPLEMENT I SPHERE a Définition : Soit O un point de l'espace On appelle sphère de centre O et de rayon R 



[PDF] Vecteurs et géométrie dans lespace en Terminale Générale

Cet espace est l'ensemble des points M définis par les combinaisons linéaires ??? AM = x ??? AB + y ?? AC + z ??? AD où x y et z sont des 



[PDF] 2 Géométrie dans lespace

Son volume est donné par la formule Longueur × largeur × hauteur Remarque n°2 : Le volume d'un cube de côté c est donné par la formule V = c3 ou V = c 



[PDF] Géométrie dans lespace - Mathoxnet

Définition : On dit que deux droites de l'espace sont perpendiculaires si elles sont coplanaires et sécantes en formant un angle droit Définition : On dit que 

:

1 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr GEOMETRIE DANS L'ESPACE I. Les solides usuels (rappels du collège) 1) Les solides droits 2) Pyramide et cône

2 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 3) Sphère et boule Aire de la sphère = 4π r2 Exemple : Surface terrestre (rayon de la terre ≈

6370km) A = 4π

r2 ≈

509 904 364 km2. Volume de la boule =

4 3

π r3 Exemple : Volume de la terre V = 3

4 r3 ≈

108 269 693 200 km3 Exercices conseillés En devoir Exercices conseillés En devoir -p252 n°13 p253 n°17 p256 n°37 -p251 n°4 p252 n°12, 7*, 10* p257 n°47* p258 n°50* p253 n°16 -p261 n°43 p263 n°57 -p255 n°10 p260 n°42, 41, 39* p255 n°10* p263 n°58* p265 n°64* p261 n°45 ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 TP conseillé TP conseillé TP Algo 2 p247 : A dos de chameau TP Algo 3 p248 : Calcul des volumes des solides de révolution p252 TP6 : A dos de chameau p250 TP4 : Calcul des volumes des solides de révolution ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 II. Droites et plans : positions relatives Activité conseillée Activité conseillée p232 activité 2 questions 1 et 2 : Solide, patron et perspective p233 activité 3 Partie A : Que voit-on réellement sur une figure en perspective ? p236 activité 2 questions 1 et 2 : Solide, patron et perspective p237 activité 3 Partie A : Que voit-on réellement sur une figure en perspective ? ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014

3 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 1) Plan de l'espace Rappel : Par deux points distincts du plan passe une unique droite, ainsi deux points définissent une droite. Caractérisation d'un plan : Par trois points non alignés de l'espace passe un unique plan, ainsi trois points non alignés définissent un plan. Propriétés : Un plan est défini : 1) soit par trois points non alignés, 2) soit par une droite et un point n'appartenant pas à cette droite, 3) soit par deux droites sécantes, 4) soit par deux droites strictement parallèles. Définition : Quatre points de l'espace sont dits coplanaires lorsqu'ils appartiennent à un même plan. Deux droites de l'espace sont dites coplanaires lorsqu'elles sont incluses dans un même plan.

4 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 2) Position relative de deux droites Droites coplanaires Droites non coplanaires Droites sécantes Droites parallèles Droites strictement parallèles Droites confondues Exemple : On considère le parallélépipède suivant : - Les droites (BG) et (BA) sont sécantes en B. - Les droites (GE) et (BD) sont parallèles. - Les droites (FA) et (CD) sont non coplanaires. - Les droites (GE) et (EH) sont coplanaires. 3) Position relative de deux plans Plans parallèles Plans sécants Plans strictement parallèles Plans confondus Les plans sont sécants suivant une droite Exemple : On considère le parallélépipède suivant : - Les plans (AFE) et (BCH) sont parallèles. - Les plans (BCD) et (ABD) sont confondus. - Les plans (GBE) et (GBF) sont sécants suivant la droite (GB).

5 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 4) Position relative d'une droite et d'un plan Droite et plan parallèles Droite et plan sécants Droite et plan strictement parallèles Droite incluse dans le plan Exercices conseillés En devoir Exercices conseillés En devoir p253 n°18 à 21 p256 n°39 à 41 p254 n°22*, 23*, 24 p254 n°25 p255 n°11 à 13 p258 n°31 à 33 p256 n°17* p261 n°47* p256 n°16* p261 n°48 ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 III. Droites et plans parallèles 1) Droites parallèles à un plan Propriété : Si une droite est parallèle à une droite d'un plan, alors elle est parallèle à ce plan. Théorème du "toit" : Si deux droites d et d' sont parallèles telles que : - un plan P contienne la droite d, - un plan P' contienne la droite d', - les plans P et P' sont sécants suivant une droite ∆, alors ∆ est parallèle aux droites d et d'.

6 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 2) Plans parallèles Théorème des plans parallèles 1 : Si un plan contient deux droites sécantes et parallèles à un autre plan, alors les deux plans sont parallèles. Théorème des plans parallèles 2 : Si deux plans sont parallèles, tout plan qui coupe l'un coupe l'autre, et leurs intersections sont deux droites parallèles. Méthode : Démontrer qu'une droite est parallèle à un plan Vidéo https://youtu.be/k7F1StU4XUs SABCD est une pyramide. I, J et K sont les milieux respectifs de [SA], [SB] et [SC]. Démontrer que la droite (IK) est parallèle au plan ABC.

7 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Dans le plan (SAC), on applique le théorème des milieux : I et K sont les milieux respectifs de [SA] et [SC], donc la droite (IK) est parallèle à la droite (AC). Pour prouver qu'une droite est parallèle à un plan, il suffit de prouver que cette droite est parallèle à une droite de ce plan. Comme (AC) est une droite du plan (ABC) et que (IK) est parallèle à (AC), on en déduit que (IK) est parallèle au plan (ABC). Méthode : Démontrer que deux plans sont parallèles Vidéo https://youtu.be/IAkjUUrwZPw Dans l'énoncé de la méthode précédente, démontrer que les plans (IJK) et (ABC) sont parallèles. Pour prouver que deux plans sont parallèles, il suffit de trouver deux droites sécantes d'un plan qui sont parallèles à l'autre plan (théorème des plans parallèles 1). On a démontré dans la méthode précédente que (IK) est parallèle au plan (ABC). On démontrerait de même que (IJ) est parallèle au plan (ABC). Les droites (IK) et (IJ), sécantes en I, sont parallèles au plan (ABC), d'après le théorème des plans parallèles 1, on en déduit que le plan (IJK) est parallèle au plan (ABC). Méthode : Construire la section d'un solide par un plan Vidéo https://youtu.be/vgXcf3M0f9w ABCDEFGH est un pavé droit. I est un point de l'arête [EF], J est un point de l'arête [AB] et K est un point de la face EFGH. Construire la section du pavé par le plan (IJK).

8 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr - Le plan (IJK) coupe la face ABFE suivant la droite (IJ). On commence donc par tracer le segment [IJ]. - Le plan (IJK) coupe la face EFGH suivant la droite (IK). Soit L le point d'intersection de la droite (IK) avec l'arête [HG]. On trace le segment [IL]. - D'après le théorème des plans parallèles 2, les faces ABFE et DCGH étant parallèles, le plan (IJK) coupe la face DCGH suivant une droite parallèle à (IJ). Le plan (IJK) coupe donc la face DCGH suivant la droite parallèle à (IJ) et passant par L. On trace cette droite qui coupe l'arête [CG] en M. - On justifie de même que le plan (IJK) coupe la face ABCD suivant la droite parallèle à (IK) passant par J. On trace cette droite qui coupe l'arête [BC] en N. - Pour finir la section, on trace le segment [MN]. Exercices conseillés En devoir Exercices conseillés En devoir p254 n°26, 27 p255 n°30, 31, 32, 35, 34* p254 n°28*, 29* p258 n°52* p255 n°33 p258 n°51 p256 n°18, 19 p257 n°20, 25, 26, 23 p262 n°52 n°49*, 53* p257 n°21* p257 n°22, 24 ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs42.pdfusesText_42
[PDF] nouvelle fantastique pdf

[PDF] louison et monsieur molière livre entier

[PDF] nouvelle fantastique expression écrite

[PDF] louison et monsieur molière résumé chapitre 3

[PDF] marie christine helgerson

[PDF] formules de maths terminale s

[PDF] formules taux d'évolution

[PDF] informations chiffrées stmg

[PDF] loi binomiale formule stmg terminale

[PDF] obligatoire et spécialité

[PDF] série es

[PDF] calculatrice loi binomiale

[PDF] calcul loi binomiale

[PDF] cadre juridique de l eau au maroc

[PDF] loi 36 15 eau