[PDF] Baccalauréat S - 2014 17 nov. 2014 Durée :





Previous PDF Next PDF



Corrigé du baccalauréat S Amérique du Nord 30 mai 2014

30 mai 2014 Corrigé du baccalauréat S Amérique du Nord. 30 mai 2014. Exercice 1. 5 points. Commun à tous les candidats ... On a n = 140 > 30 f =.



Baccalauréat S Amérique du Nord 30 mai 2014

Baccalauréat S Amérique du Nord. 30 mai 2014. Exercice 1. 5 points. Commun à tous les candidats. Dans cet exercice tous les résultats demandés seront 



Baccalauréat S Amérique du Nord Correction 30 mai 2014

30 mai 2014 Baccalauréat S Amérique du Nord Correction. 30 mai 2014. Exercice 1. 5 points. Commun à tous les candidats ... On a n = 140 > 30 f =.



Corrigé du baccalauréat S – Antilles-Guyane juin 2014

Corrigé du baccalauréat S – Antilles-Guyane juin 2014. EXERCICE 1. 5 points. Commun à tous les candidats. Partie A Amérique du Nord. 2. 30 mai 2014 ...



Amérique du nord Scorrection

Amérique du nord Scorrection. 30 mai 2014. 4 heures. Exercice no 1. 5 points. Partie A : conditionnement des pots.



STATEMENT OF TREATIES AND INTERNATIONAL AGREEMENTS

31 mai 2014 Registration with the Secretariat of the United Nations: Argentina 30. May 2014. No. 51878. United States of America and Cook Islands.



Baccalauréat S - 2014

17 nov. 2014 Durée : 4 heures. Baccalauréat S Amérique du Nord. 30 mai 2014. Exercice 1. 5 points. Commun à tous les candidats.



Amérique du Nord-mai-2014.

Amérique du Nord-mai-2014. Exercice 3. 4 points. On considère un cube ABCDEFGH donné en annexe 2 ( à rendre avec la copie ). On note M le milieu du segment 



Baccalauréat ES - 2014

7 avr. 2014 Durée : 3 heures. Baccalauréat ES/L Amérique du Nord. 30 mai 2014. Exercice 1. 4 points. Commun à tous les candidats.



RAPPORT FINAL

82e Session générale • Paris 25-30 mai 2014 l'Union Européenne et les pays d'Amérique du Nord. ... contribuer aux travaux de l'OIE sur ce sujet.

?Baccalauréat S 2014?

L"intégrale d"avril 2014 à mars 2015

Pour un accès direct cliquez sur les liens

bleus

Pondichéry 8 avril 2014

Liban 28 mai 2014

Amérique du Nord 30 mai 2014

Centres étrangers 12 juin 2014

Polynésie 13 juin 2014

Antilles-Guyane19 juin 2014

Asie 19 juin 2014

Métropole 19 juin 2014

Antilles-Guyane12 septembre 2014

......................................51

Métropole 12 septembre 2014

Amérique du Sud 17 novembre 2014

.....................................61

Nouvelle-Calédonie 17 novembre 2014

..................................67

Nouvelle-Calédonie 5 mars 2015

À la fin index des notions abordées

À la fin de chaque exercice cliquez sur * pour aller à l"index Baccalauréat S : l"intégrale 2014A. P. M. E. P. 2 ?Baccalauréat S Pondichéry 8 avril 2014?

EXERCICE14 points

Commun à tous lescandidats

Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième.

1.La durée de vie, exprimée en années, d"un moteur pour automatiser un portail fabriqué par une

entreprise A est une variable aléatoireXqui suit une loi exponentielle de paramètreλ, oùλest un

réel strictement positif.

On sait queP(X?2)=0,15.

Déterminer la valeur exacte du réelλ.

Dans la suite de l"exercice on prendra 0,081 pour valeur deλ.

2. a.DéterminerP(X?3).

b.Montrer que pour tous réels positifsteth,PX?t(X?t+h)=P(X?h).

c.Le moteur a déjà fonctionné durant 3 ans. Quelle est la probabilité pour qu"il fonctionne encore 2

ans?

d.Calculer l"espérance de la variable aléatoireXet donner une interprétation de ce résultat.

3. Dans la suite de cetexercice,on donnerades valeursarrondiesdes résultatsà 10-3

L"entreprise A annonce que le pourcentage de moteurs défectueux dans la production est égal à 1%.

Afin de vérifier cette affirmation 800 moteurs sont prélevés auhasard. On constate que 15 moteurs

sont détectés défectueux.

Le résultat de ce test remet-il en question l"annonce de l"entreprise A? Justifier. On pourra s"aider

d"un intervalle de fluctuation.

EXERCICE24 points

Commun à tous lescandidats

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie.

Il est attribué un point par réponse exacte correctement justifiée. Une réponse non justifiée n"est pas prise en compte. Une absence de réponse n"est pas pénalisée.

1. Proposition1

Toute suite positive croissante tend vers+∞.

2.gest la fonction définie sur?

-1

2;+∞?

par g(x)=2xln(2x+1).

Proposition2

Sur -1

2;+∞?

, l"équationg(x)=2xa une unique solution :e-12.

Proposition3

Le coefficient directeur de la tangente à la courbe représentative de la fonctiongau point d"abscisse

1

2est : 1+ln4.

Baccalauréat SA. P. M. E. P.

3.L"espace est muni d"un repère orthonormé?

O,-→ı,-→?,-→k?

PetRsont les plans d"équations respectives : 2x+3y-z-11=0 et x+y+5z-11=0.

Proposition4

Les plansPetRse coupent perpendiculairement.

EXERCICE35 points

Candidatsn"ayantpas suivi la spécialité

Le plan complexe est muni d"un repère orthonormé?

O,-→u,-→v?

Pour tout entier natureln, on noteAnle point d"affixezndéfini par : z

0=1 etzn+1=?

3 4+? 3 4i? z n.

On définit la suite

(rn)parrn=|zn|pour tout entier natureln.

1.Donner la forme exponentielle du nombre complexe3

4+? 3 4i.

2. a.Montrer que la suite(rn)est géométrique de raison?

3 2. b.En déduire l"expression dernen fonction den. c.Que dire de la longueur OAnlorsquentend vers+∞?

3.On considère l"algorithme suivant :

Variablesnentier naturel

Rréel

Préel strictement positif

EntréeDemander la valeur deP

TraitementRprend la valeur 1

nprend la valeur 0

Tant queR>P

nprend la valeurn+1

Rprend la valeur?3

2RFin tant que

SortieAffichern

a.Quelle est la valeur affichée par l"algorithme pourP=0,5? b.PourP=0,01 on obtientn=33. Quel est le rôle de cet algorithme?

4. a.Démontrer que le triangle OAnAn+1est rectangle enAn+1.

b.On admet quezn=rneínπ 6. Déterminer les valeurs denpour lesquellesAnest un point de l"axe des ordonnées. c.Compléter lafiguredonnéeenannexe,àrendreaveclacopie,enreprésentantlespointsA6,A7,A8 etA9.

Les traits de construction seront apparents.

EXERCICE35 points

Pondichéry48 avril 2014

Baccalauréat SA. P. M. E. P.

Candidatsayantsuivi la spécialité

Chaque jeune parent utilise chaque mois une seule marque de petits pots pour bébé. Trois marques X, Y et

Z se partagent le marché. Soitnun entier naturel. On note :Xnl"évènement "la marque X est utilisée le moisn», Y nl"évènement "la marque Y est utilisée le moisn», Z nl"évènement "la marque Z est utilisée le moisn». Les probabilités des évènementsXn,Yn,Znsont notées respectivementxn,yn,zn. La campagne publicitaire de chaque marque fait évoluer la répartition. Un acheteur de la marque X le moisn, a le mois suivant :

50% de chance de rester fidèle à cette marque,

40% de chance d"acheter la marque Y,

10% de chance d"acheter la marque Z.

Un acheteur de la marque Y le moisn, a le mois suivant :

30% de chance de rester fidèle à cette marque,

50% de chance d"acheter la marque X,

20% de chance d"acheter la marque Z.

Un acheteur de la marque Z le moisn, a le mois suivant :

70% de chance de rester fidèle à cette marque,

10% de chance d"acheter la marque X,

20% de chance d"acheter la marque Y.

1. a.Exprimerxn+1en fonction dexn,ynetzn.

On admet que :

y n+1=0,4xn+0,3yn+0,2znet quezn+1=0,1xn+0,2yn+0,7zn. b.Exprimerznen fonction dexnetyn. En déduire l"expression dexn+1etyn+1en fonction dexnet y n.

2.On définit la suite(Un)parUn=?xn

y n? pour tout entier natureln. On admet que, pour tout entier natureln,Un+1=A×Un+BoùA=?0,4 0,40,2 0,1? etB=?0,10,2? Au début de l"étude statistique (mois de janvier 2014 :n=0), on estime queU0=?0,50,3?

On considère l"algorithme suivant :

Variablesnetides entiers naturels.

A,BetUdes matrices

Entrée et initialisationDemander la valeur den

iprend la valeur 0

Aprend la valeur?0,4 0,40,2 0,1?

Bprend la valeur?0,10,2?

Uprend la valeur?0,50,3?

TraitementTant quei

Uprend la valeurA×U+B

iprend la valeuri+1

Fin de Tant que

SortieAfficherU

Pondichéry58 avril 2014

Baccalauréat SA. P. M. E. P.

a.Donner les résultats affichés par cet algorithme pourn=1 puis pourn=3. b.Quelle est la probabilité d"utiliser la marque X au mois d"avril? Dans la suite de l"exercice, on cherche à déterminer une expression deUnen fonction den.

On noteIla matrice?1 00 1?

etNla matriceI-A.

3.On désigne parCune matrice colonne à deux lignes.

a.Démontrer queC=A×C+Béquivaut àN×C=B. b.On admet queNest une matrice inversible et queN-1=((((45

232023

10

233023))))

En déduire queC=((((17

46
7

23))))

4.On noteVnla matrice telle queVn=Un-Cpour tout entier natureln.

a.Montrer que, pour tout entier natureln,Vn+1=A×Vn. b.On admet queUn=An×(U0-C)+C. Quelles sont les probabilités d"utiliser les marques X, Y etZ au mois de mai?

EXERCICE47 points

Commun à tous lescandidats

PartieA

fest une fonction définie et dérivable surR.f?est la fonction dérivée de la fonctionf.

Dans le plan muni d"un repère orthogonal, on nommeC1la courbe représentative de la fonctionfetC2la

courbe représentative de la fonctionf?. Le point A de coordonnées (0; 2) appartient à la courbeC1. Le point B de coordonnées (0; 1) appartient à la courbeC2.

1.Dans les trois situations ci-dessous, on a dessiné la courbereprésentativeC1de la fonctionf. Sur

l"une d"entre elles, la courbeC2de la fonction dérivéef?est tracée convenablement. Laquelle? Ex-

pliquer le choix effectué.

Situation 1

-1 -21

2345678910

1 2 3 4-1-2-3

C1 C2 O

Situation 2 (C2estune droite)

-1 -21

2345678910

1 2 3 4-1-2-3

C1 C2 O

Pondichéry68 avril 2014

Baccalauréat SA. P. M. E. P.

Situation 3

123456789

1 2 3 4-1-2-3

C1 C2 O

2.Déterminer l"équation réduite de la droiteΔtangente à la courbeC1en A.

3.On sait que pour tout réelx,f(x)=e-x+ax+boùaetbsont deux nombres réels.

a.Déterminer la valeur deben utilisant les renseignements donnés par l"énoncé. b.Prouver quea=2.

4.Étudier les variations de la fonctionfsurR.

5.Déterminer la limite de la fonctionfen+∞.

PartieB

Soitgla fonction définie surRparg(x)=f(x)-(x+2).

1. a.Montrer que la fonctiongadmet 0 comme minimum surR.

b.En déduire la position de la courbeC1par rapport à la droiteΔ.

La figure 2 ci-dessous représente le logo d"une entreprise. Pour dessiner ce logo, son créateur s"est servi de

la courbeC1et de la droiteΔ, comme l"indique la figure ci-dessous. Afin d"estimer les coûts de peinture, il

souhaite déterminer l"aire de la partie colorée en gris. figure 2

C1Δ

O D EG F

Pondichéry78 avril 2014

Baccalauréat SA. P. M. E. P.

Le contour du logo est représenté par le trapèze DEFG où :

— D est le point de coordonnées (-2 ; 0),

— E est le point de coordonnées (2; 0),

— F est le point d"abscisse 2 de la courbeC1,

— G est le point d"abscisse-2 de la courbeC2.

La partie du logo colorée en gris correspond à la surface située entre la droiteΔ, la courbeC1, la droite

d"équationx=-2 et la droite d"équationx=2.

2.Calculer, en unités d"aire, l"aire de la partie du logo colorée en gris (on donnera la valeur exacte puis

la valeur arrondie à 10 -2du résultat).

Pondichéry88 avril 2014

Baccalauréat SA. P. M. E. P.

ANNEXE EXERCICE 3

À compléter et à rendre avec la copie

?A0A 1A 2A3 A 4 A 5 O

Pondichéry98 avril 2014

?Baccalauréat S Liban27 mai 2014?

EXERCICE15points

Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. de transport : le vélo ou le bus.

PartieA

L"élève part tous les jours à 7 h 40 de son domicile et doit arriver à 8 h 00 à son lycée. Il prend le vélo 7 jours

sur 10 et le bus le reste du temps.

Les jours où il prend le vélo, il arrive à l"heure dans 99,4% des cas et lorsqu"il prend le bus, il arrive en retard

dans 5% des cas.

Onchoisit unedateauhasardenpériodescolaireet onnoteVl"évènement "L"élève se rendaulycéeàvélo»,

Bl"évènement "l"élève se rend au lycée en bus» etRl"évènement "L"élève arrive en retard au lycée».

1.Traduire la situation par un arbre de probabilités.

2.Déterminer la probabilité de l"évènementV∩R.

3.Démontrer que la probabilité de l"évènementRest 0,0192

4.Un jour donné, l"élève est arrivé en retard au lycée. Quelle est la probabilité qu"il s"y soit rendu en

bus?

PartieB : le vélo

On suppose dans cette partie que l"élève utilise le vélo pourse rendre à son lycée.

Lorsqu"il utilise le vélo, on modélise son temps de parcours, exprimé en minutes, entre son domicile et son

lycée par une variable aléatoireTqui suit le loi normale d"espéranceμ=17 et d"écart-typeσ=1,2.

1.Déterminer la probabilité que l"élève mette entre 15 et 20 minutes pour se rendre à son lycée.

2.Il part de son domicile à vélo à 7 h 40. Quelle est la probabilité qu"il soit en retard au lycée?

3.L"élève partàvélo. Avantquelle heuredoit-ilpartirpour arriveràl"heureaulycéeavecuneprobabilité

de 0,9? Arrondir le résultat à la minute près.

PartieC : le bus

Lorsque l"élève utilise le bus, on modélise son temps de parcours, exprimé en minutes, entre son domicile

et son lycée par une variable aléatoireT?qui suit la loi normale d"espéranceμ?=15 et d"écart-typeσ?.

On sait que la probabilité qu"il mette plus de 20 minutes pourse rendre à son lycée en bus est de 0,05.

On noteZ?la variable aléatoire égale àT?-15

1.Quelle loi la variable aléatoireZ?suit-elle?

2.Déterminer une valeur approchée à 0,01 près de l"écart-typeσ?de la variable aléatoireT?.

Baccalauréat SA. P. M. E. P.

EXERCICE25 points

Pour chacune despropositions suivantes, indiquer si elle est vraie ou fausse etjustifier chaque réponse. Une

réponse non justifiée ne sera pas prise en compte On se place dans l"espace muni d"un repère orthonormé.

On considère le planPd"équationx-y+3z+1=0

et la droiteDdont une représentation paramétrique est?????x=2t y=1+t,t?R z=-5+3t On donne les pointsA(1 ; 1; 0),B(3 ;0 ;-1) etC(7 ;1 ;-2)

Proposition1 :

Une représentation paramétrique de la droite (AB) est?????x=5-2t y=-1+t z=-2+t,t?R

Proposition2 :

Les droitesDet (AB) sont orthogonales.

Proposition3 :

Les droitesDet (AB) sont coplanaires.

Proposition4 :

La droiteDcoupe le planPau pointEde coordonnées (8 ;-3;-4).

Proposition5 :

Les plansPet (ABC) sont parallèles.

Liban1127 mai 2014

Baccalauréat SA. P. M. E. P.

EXERCICE35 points

Soitfla fonction définie sur l"intervalle [0 ;+∞[ par f(x)=xe-x. On noteCla courbe représentative defdans un repère orthogonal.

PartieA

1.On notef?la fonction dérivée de la fonctionfsur l"intervalle [0;+∞[.

Pour tout réelxde l"intervalle [0 ;+∞[, calculerf?(x). En déduire les variations de la fonctionfsur

l"intervalle [0 ;+∞[.

2.Déterminer la limite de la fonctionfen+∞. Quelle interprétation graphique peut-on faire de ce

résultat?

PartieB

SoitAla fonction définie sur l"intervalle [0 ;+∞[ de la façon suivante : pour tout réeltde l"intervalle

[0 ;+∞[,A(t) est l"aire, en unités d"aire, du domaine délimité par l"axedes abscisses, la courbeCet les

droites d"équationsx=0 etx=t.

1.Déterminer le sens de variation de la fonctionA.

2.On admet que l"aire du domaine délimité par la courbeCet l"axe des abscisses est égale à 1 unité

d"aire. Que peut-on en déduire pour la fonctionA?quotesdbs_dbs48.pdfusesText_48

[PDF] amerique du nord et du sud

[PDF] amerique du nord juin 2008

[PDF] amérique du nord mai 2013 maths corrigé

[PDF] amérique du nord pays et régions

[PDF] amérique du sud

[PDF] amerique du sud 2013

[PDF] amerique du sud carte

[PDF] amérique du sud novembre 2011 maths corrigé

[PDF] amerique du sud novembre 2013 es

[PDF] amérique du sud novembre 2013 maths corrigé brevet

[PDF] amerique du sud novembre 2015

[PDF] amerique nord 2015 bac's svt corrige

[PDF] amharic

[PDF] amideast english levels

[PDF] amideast levels