[PDF] Courbes planes Montrer que le support de





Previous PDF Next PDF



COURBES PARAMETREES

1 nov. 2004 On sait déj`a tracer des trajectoires particuli`eres celles o`u x(t) = t. ... Etude du point singulier en t = 0 de la courbe paramétrée par ...



Chapitre 1 Courbes paramétrées

x(t) y(t) t ? I où les fonctions x et y sont infiniment dérivables on note M(t) le point de paramètre t. Page 10. Étude et tracé d'une courbe paramétrée.



Courbes paramétrées

Mini-exercices. 1. Faire une étude complète et le tracé de la courbe définie par x(t) = tan t. 3 y 



1 Tracé dune courbe explicite y = f(x)

Le graphe d'une fonction correspond ainsi au cas f(t) = t. • — Le programme “type”. Un programme SCILAB de base pour tracer la courbe paramétrée {(f(t) 



F411 - Courbes Paramétrées Polaires

du plan (C) appelée courbe paramétrée (de paramètre t) Courbes Cartésiennes ?? Courbes paramétrées ... tracer la courbe associée au domaine réduit.



Courbes planes

Montrer que le support de la courbe paramétrée par. { x(t) = cost +3 Étudier et tracer les courbes paramétrées suivantes : 1. { x(t) = cos3 t.



Chapitre 6 Courbes paramétrées

points pour la tracer. 6.2 Courbes paramétrées en coordonnées car- tésiennes ... Une courbe paramétrée est une courbe dont l'abscisse et l'or-.



Chapitre 6 - Fonctions vectorielles et courbes paramétrées - Cours

A - Restreindre l'intervalle d'étude d'une courbe paramétrée . . . . . . . . . 7. B - Tracer une courbe paramétrée du plan.



TP : Courbes paramétrées (avec Geogebra)

Certaines polices de caractères utilisent des courbes paramétrées pour 3°) La commande la plus complète pour tracer une courbe paramétrée est la.



Courbes paramétrées Courbes polaires

On considère la courbe paramétrée définie par les équations on commencera par tracer la courbe pour ? dans un intervalle de longueur 2?.



[PDF] Chapitre 6 Courbes paramétrées

La courbe est un moyen de résumer graphiquement toutes les étapes précédentes Il ne sert `a rien de placer énormément de points pour la tracer Il faut (et il 



[PDF] Courbes paramétrées - Exo7 - Cours de mathématiques

Dans ce chapitre nous allons voir les propriétés fondamentales des courbes paramétrées Commençons par présenter une courbe particulièrement intéressante



[PDF] COURBES PARAMÉTRÉES - CACSUP

Tracer la courbe (C ) Exercice 2 Dans le plan P rapporté au repère orthonormé on considère la courbe (C ) dont une représentation paramétrique est :



[PDF] Fiche : Plan détude dune courbe paramétrée

6 Tracé : On trace le support de f : on commence par représenter les asymptotes les points stationnaires les points `a tangente verticale ou horizontale et 



[PDF] Études de courbes paramétrées - Apprendre-en-lignenet

Dessiner la courbe en utilisant les renseignements glanés aux étapes 1 à 5 Il n'est pas interdit de calculer certains points de la courbe afin de faire un 



[PDF] Les courbes paramétrées

2) Une courbe paramétrée peut avoir une tangente sans que les fonctions x et y soient dérivables C'est le cas par exemple de x(t) = ?t y(t) = t 3 



[PDF] COURBES PARAMETREES

1 nov 2004 · On sait déj`a tracer des trajectoires particuli`eres celles o`u x(t) = t Etude du point singulier en t = 0 de la courbe paramétrée par 



[PDF] Courbes paramétrées Courbes polaires

On considère la courbe paramétrée définie par les équations on commencera par tracer la courbe pour ? dans un intervalle de longueur 2?



[PDF] Courbes paramétrées

b) Comment tracer une courbe paramétrée ? Nous allons tracer la courbe paramétrée C définie dans le repère orthonormé ( O ; i ; j ) par :

  • Comment tracer une courbe paramétrée ?

    Tracer la courbe décrite par x(t) = sin(2t), y(t) = sin(3t) pour t ? R. Comme vu plus haut, on étudie la courbe sur l'intervalle [0, ?/2] et on compl`ete le tracé par deux symétries. On place d'abord les points et les tangentes correspondant aux valeurs t = 0, ?/6, ?/4 et ?/2.1 nov. 2004
  • Comment étudier des courbes dans le plan ?

    Pour étudier une courbe d'équation y = f(x) (ou simplement étudier une fonction f), le schéma est le suivant : – On commence par chercher l'ensemble de définition de la fonction f. Eventuellement, si la fonction est paire/impaire, périodique, on peut restreindre l'intervalle d'étude.
  • Comment montrer qu'une courbe est régulière ?

    Définition. – Une courbe géométrique est dite RÉGULIÈRE si l'un de ses représentants ?0 : I ?? R2 ou R3 est régulier en tous points. NORMALE. dim Vect(?(p)(t0),?(q)(t0)) = 2.
  • Il n'est pas possible de créer une courbe paramétrée passant par des points donnés. Cependant vous pouvez essayer par ex. la Commande AjustPoly pour obtenir une fonction dont la courbe représentative passe par ces points.
Courbes planes Exo7

Courbes planes

Fiche de Léa Blanc-Centi.

1 Courbes d"équationy=f(x)

Exercice 1Représenter les courbes d"équation cartésienney=f(x), donner l"équation de leur tangente au point d"abscisse

x=0 et la position de la courbe par rapport à cette tangente, pour :

1.f(x) =sin2x+cosx

2.f(x) =x+ln(1+ex)

1. Donner une paramétrisation (x(t);y(t))de la courbe d"équation y=px23x+4 en précisant le domaine de variation du paramètret. 2. Montrer que le support de la courbe paramétrée par x(t) =cost+3 y(t) =sint(t2R) ne peut pas être décrit par une équation de la formey=f(x). 3. Montrer que le support de la courbe paramétrée par x(t) =cos2t2 y(t) =sin4t+4sin2t+4(t2R) est le graphe d"une fonctionfque l"on précisera, ainsi que son domaine de définition. Exercice 3Étudier et tracer les courbes paramétrées suivantes: 1. x(t) =cos3t y(t) =sin3t(L"astroïde) 2. x(t) =ttht y(t) =1cht 1 3. x(t) =tsint y(t) =1cost(La cycloïde)

SoitCla courbe plane paramétrée par

x(t) =tlnt y(t) =lntt (t2]0;+¥[) 1. Comparer les points de paramètres tet 1=t, en déduire un domaine d"étude deC. 2.

Représenter C.

Montrer que la courbe paramétrée

8< :x(t) =1t 2t y(t) =tt 21
possède un point double et que les tangentes en ce point sont perpendiculaires.

Montrer que la courbe paramétrée

8< :x(t) =4t3t 2+1 y(t) =2t1t 2+2 admet un unique point singulier, et tracer l"allure de la courbe au voisinage de ce point. On considère la courbe paramétrée définie par 8< :x(t) =t+4t y(t) =t3 +2+3t+1 1. Dresser le tableau de v ariationsconjointes de xety. 2. Calculer les tangentes horizontales, v erticaleset les asymptotes. 3.

T rouverle point singulier de la courbe, étudier son type et écrire l"équation de la tangente à la courbe en

ces points. 4.

T racerla courbe.

Trouver les droites à la fois tangentes et orthogonales à la courbe x(t) =3t2 y(t) =4t3 2 Exercice 9Étudier les courbes d"équations polaires suivantes:

1.r(q) =1ptan(2q)pourq2]0;p4

2.r(q) =sin2qcosqpourq2]p2

;p2 [(La cissoïde droite)

3.r(q) =pcos(2q)(La lemniscate de Bernoulli)

On considère les courbesC1etC2(des limaçons de Pascal)respectivement données en polaires par

r

1(q) =1+cosqr2(q) =3+cosq

Pouri=1;2, on noteNi(q)la droite orthogonale au pointMi(q)2Ci. Vérifier que pour toutq60[2p], les droitesN1(q)etN2(q)sont sécantes, en un pointP(q). Déterminer le lieu du pointPquandqvarie.

Indication pourl"exer cice6 NUn pointM(t)est singulier six0(t) =0 ety0(t) =0.Indication pourl"exer cice10 NUtiliser le repère de Frenet(~uq;~vq).4

Correction del"exer cice1 N1.Pour f(x) =sin2x+cosx, le domaine de définition defestR, etfest de classeC¥. On remarque que

fest 2p-périodique et paire, il suffit donc de faire l"étude defsur l"intervalle[0;p].

V ariationsde f

Pourx2[0;p],f0(x) =2sinxcosxsinx=sinx(2cosx1)et doncf0(x) =0 si et seulement si x2 f0;p3 ;pg. Comme sinx>0 six2]0;p[, pour étudier le signe def0(x), il suffit d"étudier le signe de(2cosx1), et on obtient x0 p3 pf

0(x)0+005

4 f% & 11

T angenteshorizontales

Le graphe defpossède une tangente horizontale là oùf0s"annule, c"est-à-dire aux points de

coordonnées(0;1),(p3 ;54 )et(p;1). Enparticulier, latangenteaupointd"abscisse0esthorizontale

et a pour équationy=1. Pour déterminer la position de la courbe par rapport à sa tangente en ce

point, on étudie le signe def(x)1 pourxproche de 0: f(x)1=sin2x1+cosx=cos2x+cosx=cosx(1cosx) Cette expression est positive au voisinage de 0 (et même>0 pourx6=0 proche de 0). La courbe est donc au-dessus de sa tangente.

Points particuliers

Le graphe defcoupe l"axe des abscisses entre 0 etpen un unique pointx0, qu"on détermine en résolvant f(x) =0()1cos2x+cosx=0()X2X1=0(X=cosx) cequidonnedeuxsolutionspourX, maisuneseuledans[1;1]:X=1p5 2 etdoncx0=arccos(1p5 2

Le graphe defest obtenu sur[p;p]par symétrie par rapport à l"axe des ordonnées, puis surRpar

2p-périodicité.xy

x 00p p 3 xy y=sin2x+cosx2.Pour f(x) =x+ln(1+ex), le domaine de définition defestRetfest de classeC¥.

V ariationsde f

Commef0(x) =1+ex1+ex, pour toutx,f0(x)>1. En particulierfest strictement croissante surR. 5 •Allure du graphe en +¥

On af(x)!x!+¥+¥et

f(x)x =1+lnex(ex+1)x =1+x+ln(ex+1)x !x!+¥2 puisf(x)2x=ln(ex+1)!x!+¥0+. Ainsi le graphe defa en+¥une asymptote, d"équation y=2x, et reste au-dessus de cette asymptote.

Allure du graphe en ¥

On af(x)!x!¥¥et

f(x)x =1+ln(1+ex)x !x!¥1 puisf(x)x=ln(1+ex)!x!¥0+. Ainsi le graphe defa en¥une asymptote, d"équation y=x, et reste au-dessus de cette asymptote.

T angenteau point d"abscisse 0

L"équation de la tangente au graphe defau point d"abscissex0, et la position du graphe par rapport

à cette tangente, peuvent être obtenues simultanément à partir du développement limité defen

x

0. Pour l"équation de la tangente, un développement limité à l"ordre 1 suffit, mais pour avoir la

position il faut pousser le développement limité à l"ordre 2 (ou à l"ordre 3 si le terme d"ordre 2 est

nul, ou plus encore...): f(x) =x+ln(1+ex) =x+ln

1+1+x+12

x2+o(x2) =x+ln2+ln 1+12 x+14 x2+o(x2) =x+ln2+12 x+14 x2 12 12 x+14 x2 2 +o(x2) =ln2+32 x+18 x2+o(x2) L"équation de la tangente au point d"abscisse 0 (donnée par le DL à l"ordre 1) est donc y=ln2+32 x

De plus,f(x)ln2+32

x=18 x2+o(x2) =18 x2(1+o(1))oùo(1)est un terme qui tend vers 0 quandx!0. Ainsi(1+o(1))a le même signe que 1 pourxproche de 0, etf(x)ln2+32 xest

positif au voisinage de 0: la courbe reste localement au-dessus de sa tangente.xyy=x+ln(x+ex)y=xy=2xy=ln2+32

xln2 01 6

Correction del"exer cice2 N1.Pour transformer une équation cartésienne y=f(x)en paramétrisation, il suffit de poserx=tety=f(t),

en faisant décrire au paramètretle domaine de définition def. Ici,f(x)=px23x+4 est bien définie

pour lesx2Rtels quex23x+4>0i.e.x2[4;1]. On obtient donc la paramétrisation suivante: x(t) =t y(t) =pt23t+4(t2[4;1]) ce qui signifie (x;y)2C()x2[4;1] y=px23x+4 () 9t2[4;1]jx(t) =t y(t) =pt23t+4 oùCest la courbe étudiée.xyy=px23x+441 2.

S"il est toujours possible de représenter le graphe d"une fonction comme une courbe paramétrée, la

réciproque n"est pas vraie. Ici, la courbe considérée est le cercle de rayon 1 centré au point(3;0).

Ce n"est donc pas un graphe de fonction, puisque plusieurs points de la courbe ont la même abscisse:

connaîtrexne donne pasy! Par exemple, pourt=p2 , on obtient les deux points de la courbe(3;1)et (3;+1).xy (cost+3;sint)03(3;+1)(3;1)3.On constate, en utilisant la formule sin

2t=1cos2t=1x(t), que

y(t) =sin4t+4sin2t+4= (1x(t))2+4(1x(t))+4 =x(t)22x(t)+1= (x(t)1)2 7

Ainsi les points(x;y)de la courbe vérifient l"équationy= (x1)2. De plus, lorsque le paramètretdécrit

R,x(t) =cos2t2 décrit l"intervalle[2;1]. Finalement, (x;y)2C() 9t2Rjx(t) =cos2t2 y(t) =sin4t+4sin2t+4 ()x2[2;1] y= (x1)2 et la courbe est donc le graphe de la fonction f:[2;1]!R x7!(x1)2xyy= (x1)2211

Correction de

l"exer cice

3 N1.Les e xpressionsx(t) =cos3tety(t) =sin3tsont bien définies pour toutt2R.

Réduction de l"interv alled"étude

Les fonctionsxetyétant 2p-périodiques, il suffit de restreindre l"étude à un intervalle de longueur

2ppour obtenir l"intégralité du support de la courbe.

La fonctionxest paire, la fonctionyest impaire: on fait donc l"étude sur[0;p], puis la courbe complète sera obtenue par symétrie par rapport à l"axe(Ox). On constate quex(pt) =x(t)et quey(pt) =y(t), par conséquent les pointsM(p2 t)et M(p2 +t)sont symétriques par rapport à l"axe(Oy): on restreint donc l"étude à[0;p2 ], puis on complète par symétrie par rapport à(Oy).

Finalement, on fait l"étude sur[0;p2

]puis on complète en utilisant successivement les symétries par rapport à(Oy)et(Ox).

T ableaude v ariationsconjointes

Les fonctionsxetysont de classeC1. Soitt2[0;p2

x(t) =cos3t y(t) =sin3t x

0(t) =3sintcos2t y0(t) =3costsin2t

x

0(t)<0()t2]0;p2

[y0(t)>0()t2]0;p2 x

0(t) =0()t2 f0;p2

gy0(t) =0()t2 f0;p2 g 8 t0 p2x

0(t)001

x& 0 1quotesdbs_dbs28.pdfusesText_34
[PDF] courbe paramétrée symétrie

[PDF] courbes paramétrées exercices corrigés prépa

[PDF] courbe paramétrée exo7

[PDF] comment dessiner une branche parabolique

[PDF] résumé branches infinies

[PDF] branches infinies developpement limité

[PDF] branche parabolique de direction asymptotique

[PDF] methode branches infinies

[PDF] etudes des fonctions branches infinies

[PDF] mode d'emploi lave linge brandt

[PDF] comment utiliser machine a laver brandt

[PDF] bras de levier définition

[PDF] levier inter appui

[PDF] cours moment d'une force par rapport ? un axe

[PDF] bras de levier calcul