[PDF] Chapitre 3 : Régime transitoire I. Étude des circuits RC RL et RLC





Previous PDF Next PDF



Chapitre 8 Circuit linéaire du premier ordre

On prendra comme conditions initiales uC (0) = E. Circuit RC en régime libre. III Étude quantitative du circuit RL. 3.1 Mise en équation.



Chapitre 7 : Le dipôle RL Chapitre 7 : Le dipôle RL

II Réponse d'un dipôle RL à un échelon de tension : 1) Etude expérimentale : établissement du courant dans un circuit comportant une bobine : Voir TPφ n°5.



RÉSONANCE ÉLECTRIQUE ÉTUDE DUN CIRCUIT R L C RÉSONANCE ÉLECTRIQUE ÉTUDE DUN CIRCUIT R L C

ÉTUDE D'UN CIRCUIT RLC b) Sa réalisation. Le schéma de principe montre la présence du générateur (G) associé à la portion de circuit R L C entre A et E. La 



Etude des circuits RLC Etude des circuits RLC

Etude des circuits RLC. Projet de P6. Cedric Dangeard. Sami Benjelloun. Vincent 5.1.2 Réponse d'un circuit RLC `a un échelon de tension . . . . 22. 5.1.3 ...



Chapitre 3 Les régimes de fonctionnement de quelques circuits

23 nov. 2003 effectuer un bilan énergétique. 3.1.2.2. Etablissement de l'équation différentielle. Le circuit RL ne comporte qu'une maille. La tension est ...



ETUDE DUN CIRCUIT SOUMIS A UN ECHELON DE TENSION (RC

Cadre d'étude : Dans ce chapitre on étudie les circuits linéaires RC



Régimes transitoires du premier ordre Régimes transitoires du

12 nov. 2017 Exercice 2 : Régime libre d'un circuit RL série. [♢00]. E. •. 2. •. 1. •. R i ... Figure 7 – Notations pour l'étude du circuit RL à deux mailles.



E4 – Réseaux linéaires en régime transitoire / régime permanent

II.1 Étude théorique de l'évolution du courant : Nous allons étudier la réponse indicielle d'un circuit RL série puis son régime 



DM 1 : étude du circuit RL série

c'est-à-dire l'expression du signal de sortie intensité du courant i(t) suite à l'entrée d'un signal de tension e(t) représentée Figure 1. On étudiera.



Chapitre 5 - Circuits RL et RC

= 0 alors la tension v = 0. L'inductance se comporte comme un court-circuit en présence d'un courant constant (DC). 2. Il ne peut 



Chapitre 3 - Filtres et analyse fr ´equentielle

Le circuit RL série peut être analysé pour déterminer sa fréquence de L'électrocardiographie est l'étude des signaux électriques générés par le coeur.



Chapitre 8 Circuit linéaire du premier ordre

b Régime permanent du circuit RC. 1.3 Étude qualitative du circuit RL. La relation courant/tension d'une bobine est uL = L.



RÉSONANCE ÉLECTRIQUE ÉTUDE DUN CIRCUIT R L C

ÉTUDE D'UN CIRCUIT RLC. RÉSONANCE ÉLECTRIQUE. ÉTUDE D'UN CIRCUIT R L C. Jacques PHILIPPE. INTRODUCTION. L'ordinateur s'introduit dans les laboratoires de 



Chapitre 7 : Le dipôle RL

II Réponse d'un dipôle RL à un échelon de tension : 1) Etude expérimentale : établissement du courant dans un circuit comportant une bobine : Voir TP? n°5.



Chapitre 3 : Régime transitoire I. Étude des circuits RC RL et RLC

I. Étude des circuits RC RL et RLC série en régime libre. 1. Cas du circuit RC a) Équation différentielle. Branchons une résistance R aux bornes d'un 



Etude des circuits RLC

cupe une place prépondérante dans cette étude. Le circuit RLC est en effet régi par une équation différentielle générale que nous détaillerons par la suite.



TRAVAUX PRATIQUES DELECTRICITE ET DELECTRONIQUE

L'étude du circuit R.L.C. série portera sur les lois de variation avec la fréquence : - De l'amplitude et de la phase du courant traversant le circuit.



TD corrigés dElectricité

29 oct. 2011 8) Régime transitoire dans un circuit RLC : ... 10) Régime transitoire en électricité étude électrique d'un radar : Le circuit de déviation ...



Électrocinétique I - Circuits linéaires en régime transitoire

2.3 Étude énergétique . 4 Régime libre du circuit RLC série. 3. 4.1 Équation différentielle . ... 6 Réponse d'un circuit RL `a un échelon de tension.

Cours d"électrocinétique Sup TSI

Chapitre 3 : Régime transitoire

I. Étude des cir cuitsRC, RL et RLC série en régime libr e 1.

Cas du cir cuitRC

a)

Équation dif férentielle

Branchons une résistanceRaux bornes d"un condensateur chargé (figure 1a).RCK q

0t <0Figure 1aRCui

q t0Figure 1b À l"instantt= 0on ferme l"interrupteurK. On a alors (figure 1b) : u=Ri=qC aveci=dqdt

On obtient l"équation différentielle :

dqdt +qRC = 0 oudqdt +q = 0=RChomogène à un temps est appelée constante de temps ou temps de relaxation. Le circuitRCest donc un circuit de premier ordre caractérisé par la constante de temps =RC. b)

Résolution de l"équation dif férentielle

On a :

dqdt +q = 0)dqq =dt )q(t) =Aet=

Àt= 0,q(t= 0) =q0=A

D"où :

q(t) =q0et=D"autre part,u=qC eti=dqdt . Donc : u(t) =u0et=eti(t) =u0R et=Régime transitoire 1/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

avecu0=q0C La représentation des fonctionsq(t)eti(t)sont données sur les figures 2a et 2b.0q(t)tq 0

Figure 2a0i(t)t

u0R

Figure 2b

Commentaires :

q(t)etu(t)sont des fonctions continues tandis quei(t)est discontinu ent= 0. En régime permanent (t >> ),q(t!+1)!0,u(t!+1)!0eti(t!+1)!0. L"intersection de la tangente à l"origine et l"axe des abscisses se fait ent=. En effet, la tangente à l"origine a pour équationq(t) =kt+q0aveck= (dqdt )t=0=q0

Le point d"intersection est donc pourt=.

Plusest faible, plus la décharge du condensateur à travers la résistance est rapide et inversement. c)

Portrait de phase

La trajectoire de phase est la courbe dé-

crite par le point figuartifPde coordonnées (f(t);df(t)dt

On appelle portrait de phase l"ensemble

des trajectoires de phase lorsque les condi- tions initiales varient.

Dans le cas du circuitRC, le plan de phase

est (q;dqdt =i). Puisquei=q , La trajec- toire de phase est une droite affine (figure 3).Pi q

Figure 3

d)

Bilan éner gétique

L"énergieWdissipée par effet Joule dans le résistor est : W=Z +1 0

Ri2dt=Z

+1 0u 20R e2t=dt=12

Cu20=q202CRégime transitoire 2/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

Conclusion :

L"énergie emmagasinée à l"instant initial dans le condensateur est intégralement dissipée

par effet joule dans le résistor. 2.

Cas du cir cuitRL

a)

Équation dif férentielle

Soit le circuit de la figure 4a. À l"instantt= 0, on ouvre l"interrupteurK. On a alors (figure 4b) : u(t) =Ri(t) =Ldidt

Soit encore :

di(t)dt +RL i(t) = 0 etdu(t)dt +RL u(t) = 0Le circuitRLest donc un circuit de premier ordre caractérisé par la constante de temps =LR .K I 0LR t <0Figure 4aK I 0LR t0i(t)i(t)u(t)Figure 4b b)

Résolution de l"équation dif férentielle

On a :

i(t) =Aet= iétant continu ent= 0, alorsi(t= 0) =I0=A

D"où :

i(t) =I0et=D"autre part,u=Ri. Donc :

u(t) =RI0et=La représentation des fonctionsi(t)etu(t)sont données sur les figures 5a et 5b.Régime transitoire 3/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

0u(t)t

RI0

Figure 5a0i(t)tI

0

Figure 5b

c)

Portrait de phase

On a :

di(t)dt =RL i(t)

Dans le plan de phase (i;didt

) la trajectoire de phase est une droite affine. d)

Bilan éner gétique

L"énergieWdissipée par effet Joule dans le résistor est : W=Z +1 0

Ri2dt=Z

+1 0

RI20e2t=dt=12

LI20

Conclusion :

L"énergie emmagasinée à l"instant initial dans la bobine est intégralement dissipée par effet

joule dans le résistor. 3.

Cas du cir cuitRLC

a)

Équation dif férentielle

Soit le circuit de la figure 6.

La loi des mailles implique :

Ri+Ldidt

+qC = 0 aveci=dqdt

On en déduit :

d 2qdt 2+RL dqdt +1LC q= 0i LR Cq

Figure 6

Posons :

!0=1pLC : Pulsation propre.Régime transitoire 4/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

Q=L!0R

=1RC!

0: Facteur de qualité (sans dimension).

2=RL =!0Q :est le coefficient d"amortissement.

L"équation différentielle s"écrit :

d 2qdt 2+!0Q dqdt +!20q= 0 oud2qdt

2+ 2dqdt

+!20q= 0Le circuitRLCsérie est donc un circuit du second ordre caractérisé par la pulsation propre

0=1pLC

et son facteur de qualitéQ=L!0R =1RC! 0.

Signification physique deQ:

PlusQest grand (est petit), plus l"amortissement dû à la présence de la dérivée première

est faible. b)

Résolution de l"équation dif férentielle

La solution est de la forme :

q(t) =A1er1t+A2er2t A

1etA2sont des constantes qui dépendent des conditions initiales etr1etr2sont les racines

de l"équation caractéristique : r 2+!0Q r+!20= 0 Le discriminant réduit de cette équation est :

0=!204Q!20=!20(14Q21) =2!20

Il existe trois cas selon le signe de0:

0>0ouQ <0;5; > !0: C"est le régime apériodique.

Les racines sont des réelles :

r 1;2=q 2!20

Donc :

q(t) =et[A1ep

2!20t+A2ep

2!20t]

Lorsquet!+1,etl"emporte etq!0sans osciller.

La représentation des fonctionsq(t)eti(t)sont données sur la figures 7a pour les condi- tions initialesq(t= 0) =q0eti(t= 0) = 0tandis que la trajectoire de phase est donnée sur la figure 7b.Régime transitoire 5/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

0q(t)i(t)tq

0Figure 7ai

q

Figure 7b

La trajectoire de phase est une courbe ouverte caractéristique d"un système apériodique.

0= 0ouQ= 0;5;=!0: C"est le régime critique.

Les deux racines sont réelles et confondues :r1=r2==!0.

D"où :

q(t) = (B1+B2t)et

Quandt!+1,q!0rapidement sans osciller.

La représentation des fonctionsq(t)eti(t)sont données sur la figures 8a pour les condi- tions initialesq(t= 0) =q0eti(t= 0) = 0tandis que la trajectoire de phase est donnée sur la figure 8b.0q(t)i(t)tq

0Figure 8ai

q

Figure 8b

0<0ouQ >0;5; < !0: C"est le régime pseudo-périodique.

Les racines sont complexes conjuguées :

r

1;2=iq!

202=i
avec =p!

202est la pseudo-pulsation.

Donc :

q(t) =et[C1cos( t) +C2sin( t)] =Cetcos( t+') C"est une fonction pseudo-périodique d"amplitudeQm=Cetvariable en fonction du temps et de pseudo-période : T=2 =T0r 1(!

0)2=T0r

114Q2Régime transitoire 6/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

avec :T0=2! 0. La représentation de la fonctionq(t)est donnée sur la figures 9a pour les conditions initialesq(t= 0) =q0eti(t= 0) = 0tandis que la trajectoire de phase est donnée sur la figure 9b.0q(t)tq

0Figure 9aqi

Figure 9b

c)

Bilan éner gétique

On a trouvé :

Ldidt +qC +ri= 0)Ldidt i+qC i+ri2= 0

D"où :

ddt (12

Li2+q22C) =Ri2

que l"on peut écrire : dWdt =Ri2 oùW=12 Li2+q22Cest l"énergie emmagasinée dansLetC. Cette énergie diminue par dissi- pation dans la résistanceR. II. Réponse d"un cir cuitRC, RL et RLC à un échelon de tension 1.

Cas du cir cuitRC

a)

Régime transitoir e

Soite(t)un échelon de tension (figure 10a) c"est à dire :

8>>>><

>>>:e(t) = 0 sit <0 e(t) =E=cstesit >0

Le circuit de la figure 10b est soumis à cet échelon de tension.Régime transitoire 7/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

e(t)E t0

Figure 10ae(t)iR

Cu

Figure 10b

La loi des mailles, pourt >0, s"écrit :

E=Ri+uaveci=dqdt

=Cdudt

Donc :dudt

+u =E avec=RC

La solution de cette équation s"écrit :

u(t) =Aet=+E Si le condensateur est initialement non chargé alors :u(t= 0) = 0et doncA=E. D"où : u(t) =E(1et=) eti(t) =Cdudt =ER et=Ces relations montrent queu(t!+1)!Eeti(t!+1)!0. En régime permanent, le condensateur se comporte comme un interrupteur ouvert (i= 0). Il retarde l"établissement de la ddp entre ses bornes. La représentation des fonctionsu(t)eti(t)sont données sur les figures 11a et 11b.u(t)t0E

Figure 11a0i(t)tE

R

Figure 11b

b)

Étude éner gétique

On a :

E=Ri+qC

)Ei=Ri2+qC iaveci=dqdt

On a donc :

Ei=Ri2+ddt

(q22C

Cette équation traduit un bilan énergétique tel que :Régime transitoire 8/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

Eiest la puissance fournie par le générateur; Ri2est la puissance dissipée par effet Joule dans le résistorR; q22Cest l"énergie électrique emmagasinée dans le condensateur. Calculons l"énergie totale fournie par le générateur : W g=Z +1 0

Eidt=CE2

Puisque l"énergie emmagasinée dans le condensateur estWC=12

CE2, on conclut que la

résistance dissipe la moitié de l"énergie fournie par le générateur. 2.

Cas du cir cuitRL

Soit le circuit de la figure 12. Àt= 0, on ferme l"interrupteurK.

Pourt <0:i(t) = 0.

Pourt >0, la loi des maille s"écrit :

E=Ri+Ldidt

)didt +RL i=EL

La solution de cette équation s"écrit :

i(t) =Aet=+ER aveci(t= 0) = 0. Donc :A=ER

On a donc :

i(t) =ER (1et=) etu(t) =Ldidt =Eet=Ces relations montrent quei(t!+1)!ER etu(t!+1)!0. En régime permanent, la bobine se comporte comme un fil de résistance nulle (u= 0). Elle retarde l"établissement du courant dans le circuit. EiRK Lu

Figure 12

La représentation des fonctionsi(t)etu(t)sont données sur les figures 13a et 13b.Régime transitoire 9/11 Y Elmokhtari

Cours d"électrocinétique Sup TSI

i(t)t0E R

Figure 13a0u(t)tE

Figure 13b

3.

Cas du cir cuitRLC série

Soit le circuit de la figure 14. Le condensateur est initialement déchargéq(t <0) = 0. À l"instantt= 0, on ferme l"interrupteurK. EiR CuKL

Figure 14

Pourt >0, la loi des maille donne :

E=Ldidt

+Ri+qC )d2qdt 2+RL dqdt +1LC q=EL que l"on peut écrire sous la forme : d 2qdt 2+!0Q dqdt +!20q=EL avec

Q=L!0R

=1RC!

0;!0=1pLC

La solution est la somme de deux termes :

qt(t)solution de l"équation sans second membre. Elle décrit donc un régime transitoire qui dure quelques périodes et qui dépend de0: régime apériodique (figure 15a) si0>0ou régime pseudo-périodique (figure 15b) si0<0.quotesdbs_dbs1.pdfusesText_1
[PDF] etude d'un ouvrage bac pro eleec 2017

[PDF] etude d'un pont

[PDF] etude d'un sondeur correction

[PDF] etude d'une image

[PDF] etude d'une installation thermique correction

[PDF] etude de biologie débouchés

[PDF] etude de cas arcu 2017 corrigé

[PDF] etude de cas audit financier

[PDF] etude de cas audit interne

[PDF] etude de cas bac pro commerce 2011

[PDF] etude de cas bac pro commerce 2014 ankelia

[PDF] etude de cas bac pro commerce 2014 antilles

[PDF] etude de cas bac pro commerce 2015 gamm vert

[PDF] etude de cas bac pro commerce decathlon 2012

[PDF] etude de cas bac pro sen