[PDF] Exercices corrigés enseignant d'analyse numérique





Previous PDF Next PDF



Analyse Numérique Analyse Numérique

Newton et celle de la sécante. 2.4.2 La méthode de Newton-Raphson. Considérons un ... méthode classique des trapèzes dont on améliore ainsi la convergence. La ...



Corrigé de lEXAMEN 1

MAT-18996: Analyse numérique pour l'ingénieur. Hiver 2009. Question 1. (20 points) a) [6 pts] Écrire la méthode de Newton pour résoudre le syst`eme. 3x2 + xy ...



Analyse Numérique - Exercices Corrigés Analyse Numérique - Exercices Corrigés

On a vu au cours que l'ordre de convergence de la méthode de Newton est 2 pourvu que f ne s'annule pas au zéro de f. En particulier dans notre cas : - zéro α2 



Analyse Numérique - Corrigé du TD 5

Par suite d'apr`es l'exercice 1





EILCO : Analyse Numérique Chapitre 3 : Résolution Numérique des

Appliquons la méthode de la sécante et la méthode de Newton pour trouver la racine de f(x) = arctan(x). Nous partons des itérés x0 = 1 et x1 = 3 pour la méthode 



LICENCE 3 MATHEMATIQUES – INFORMATIQUE

Corrigé de l'exercice 101 page 178 (Méthode de Newton). 1. Soient u et v Licence de Mathématiques 3eme année



Université Aix Marseille 1 Licence de mathématiques Cours d

2 févr. 2017 L'objet de l'analyse numérique est de concevoir et d'étudier des méthodes de ... Corrigé de l'exercice 46 page 121 (Méthode de Newton pour le ...



ANALYSE NUMÉRIQUE

La méthode de Newton nécessite le calcul des dérivées f (x) c'est un [1] Gloria Faccanoni



Analyse Numérique

Un des buts de l'analyse numérique consiste Ceci montre que la méthode de Newton converge de façon quadratique...si elle converge !



Analyse Numérique

Analyse Numérique. Corrigé du TD 5. EXERCICE 1. Méthode des Par suite d'apr`es l'exercice 1



Exercices corrigés

enseignant d'analyse numérique pour lui poser une question. Exercice 7 (ordre de convergence de la méthode de Newton) On rappelle ici la méthode de New-.



ANALYSE NUMÉRIQUE

ANALYSE. NUMÉRIQUE. Exercices corrigés. Dr. Hafidha SEBBAGH Docteur en mathématiques option analyse numérique ... 1.3.5 Méthode de Newton modifiée .



EXAMEN 1 - Corrigé

EXAMEN 1 - Corrigé. MAT-2910 : Analyse numérique pour l'ingénieur (v) [5 pts] Appliquer la méthode de Newton à l'équation de départ et faites 2 ité-.



M33 Analyse numérique

5 juin 2014 On a inclus dans ce texte nombreux exercices corrigés. ... Remarque Interprétation géométrique de la méthode de NEWTON et des méthodes de la ...



Analyse Numérique

Ce document propose un recueil d'exercices corrigés d'analyse numérique. Le Résolution de f(x)=0 par la méthode de newton :.



Table des matières

1.6 Corrigés des exercices . 4.3 Méthode de Newton-Raphson . ... Ce document notes de cours d'analyse numérique avec exercices corrigés re-.



Analyse Numérique - Exercices Corrigés

On a vu au cours que l'ordre de convergence de la méthode de Newton est 2 pourvu que f ne s'annule pas au zéro de f. En particulier dans notre cas : - zéro ?2 



Analyse Numérique

Ce document propose un recueil d'exercices corrigés d'analyse numérique. Le Résolution de f(x)=0 par la méthode de newton :.



Analyse Num´erique Corrig´e du TD 5 - Côte d'Azur University

2 2 M´ethode de Newton On consid`ere maintenant la m´ethode de Newton pour rechercher ce z´ero a ´etablir sa formule en utilisant un d´eveloppement de Taylor; b faire un dessin pour illuster la m´ethode a Par la formule en utilisant un d´eveloppement de Taylor On se donne x 0 Pour n ? 0 on ´ecrit la formule de Taylor de f(x n+1



Devoir de révision : la méthode de Newton - univ-rennes

1)) on construit x 2 puis x 3 Exercice 1 Dessiner la suite de Newton On considère les six fonctions ci-dessous ayant toutes ? = ? 2 pour zéro : f: x 7?x2?2 i: x 7?(x? ? 2)4+1 2 (x? ? 2) g: x 7?x2? ? 3x+( 6?2) j: x 7?1 8 (e 4(x? ? 2)?1) h: x 7?x2?2x+(2 ? 2?2) k: x 7?1 2



Correction - Feuille de TD 2 : Méthodes d’intégration numérique

Correction - Feuille de TD 2 : Méthodes d’intégration numérique Exercice 1 (Une méthode sur [?1 1]) Soient x1 x2 ? [?1 1] x1 < x2 et ?1 ?2 ? R On définit pour toute fonction f continue sur [?1 1] la méthode d’intégration numérique T de la façon suivante :



Analyse Numérique

2 Ecrire la méthode de Newton ourp la fonction f A l'aide du gapher de la fonction f trouver ourp quel zéro l'ordre de onvercgence de la méthode est galé à 2 3 On onsidèrce maintenant la méthode de ointp xe x k+1 = g(x k) avec g(x k) = sin(x k)+ x k 2 (? 6 p 3 2) ourp alculerc le zéro 2 2I 2 Etablir si ettec méthode de ointp xe est



Searches related to analyse numérique exercices corrigés méthode de newton

manière de commencer un cours d’analyse numérique que par un chapitre sur l’étude des erreurs Le logiciel scilab est un très puissant logiciel de calcul numérique de la même famille que les logiciels Matlab ou Octave librement téléchargeable sur scilab

Grenoble INP - Pagora Analyse numérique

1ère année

Exercices corrigés

NB : Les exercices corrigés ici sont les exercices proposés durant les séances de cours. Les corrections données

sont des corrections plus détaillées que celles fournies durant le cours (si le temps a permis de donner ces

corrections). Si vous avez des questions concernant ces exercices, n"hésitez pas à envoyer un mail à votre

enseignant d"analyse numérique pour lui poser une question. Si vous trouver des coquilles, des erreurs dans

le présent document, n"hésitez pas à le signaler à votre enseignant par un mail.

Chapitre 1 : Introduction au calcul approché

Exercice 1Montrer que9325s"écrit bien(10010001101101)2en base2puis reconvertir(10010001101101)2

en base10.Pour convertir un entier de la base10à la base2(on verra que la méthode diffère légèrement pour un

nombre décimal un peu plus tard), on divise l"entier par2(division euclidienne) et le reste correspond au

dernier chiffre de l"entier en base2. Pour9325, cela donne

9325 = 24662 +1

et on itère le processus sur le quotient obtenu (jusqu"à ce qu"il vaille1). Ainsi puisque

4662 = 22331 +0

On peut réécrire9325sous la forme

9325 = 2(22331 + 0) + 1 = 222331 + 210+ 201

et01sont les 2 derniers chiffres de9325écrit en base2. Pour enfoncer le clou, on détaille encore l"itération

suivante

2331 = 21165 +1

9325 = 2

2(21165 + 1) + 210+ 201= 231165 + 221+ 210+ 201

et101sont les 3 derniers chiffres de9325écrit en base2. On affiche ensuite le processus itératif dans son

entier :9325 = 24662 +1

4662 = 22331 +0

2331 = 21165 +1

1165 = 2582 +1

582 = 2291 +0

291 = 2145 +1

145 = 272 +1

72 = 236 +0

36 = 218 +0

18 = 29 +0

9 = 24 +1

4 = 22 +0

2 = 21 +0

1 = 20 +1

1 Donc, on peut décomposer9325de la manière suivante

9325 = 2

131+ 2120+ 2110+ 2101+ 290+ 280+ 270

+ 2

61+ 251+ 240+ 231+ 221+ 210+ 201

On a bien montré que(9325)10= (10010001101101)2. Il ne reste plus qu"? reconvertir ce nombre binaire en

base10. Pour ce faire, on va procéder de manière itérative. On commence par cette première étape,1est

le chiffre le plus fort (le plus à gauche) de(10010001101101)2et on construit le résultat intermédiaire de la

manière suivante, on multiplie par 2 le résultat intermédiaire précédent (au départ 0) et on ajoute le chiffre

le plus fort restant à traiter. On commence donc par

20 +1= 1 = 201

Le résultat intermédiaire est donc1et il ne reste plus qu"à traiter0010001101101du binaire (10010001101101)

2. On itère le processus. On multiplie par2le résultat intermédiaire (ici 1) puis on ajoute

le chiffre le plus fort restant à traiter (soit ici0). D"où

21 +0= 2 = 211+ 200

Il ne reste plus qu"à traiter010001101101du binaire(10010001101101)2. Si on détaille l"étape suivante, on a

22 +0= 4 = 221+ 210+ 200

Il ne reste plus qu"à traiter10001101101du binaire(10010001101101)2. On affiche ensuite le processus itératif

dans son entier :20 +1= 1

21 +0= 2

22 +0= 4

24 +1= 9

29 +0= 18

218 +0= 36

236 +0= 72

272 +1= 145

2145 +1= 291

2291 +0= 582

2582 +1= 1165

21165 +1= 2331

22331 +0= 4662

24662 +1= 9325

On vérifie donc bien que(9325)10= (10010001101101)2. Notons bien que de processus décrit ici est juste le

premier processus mais pris en sens inverse.

Exercice 2Écrire(34)10et(27)10en binaire puis effectuer l"opération en binaire(34)10+(27)10et vérifier

que le résultat obtenu soit le bon. 2 Convertissons tout d"abord34en binaire. Cela donne

34 = 217 +0

17 = 28 +1

8 = 24 +0

4 = 22 +0

2 = 21 +0

1 = 20 +1

On a donc(34)10= (100010)2. Convertissons maintenant27en binaire. On a

27 = 213 +1

13 = 26 +1

6 = 23 +0

2 = 21 +1

1 = 20 +1

et(27)10= (11011)2. On effectue maintenant l"addition de(100010)2et(11011)2. Pour rappel, l"addition en

binaire fonctionne de la manière suivante+01 001 1110

D"où l"opération suivante

1 0 0 0 1 0

+ 1 1 0 1 1= 1 1 1 1 10 1 On a(100010)2+ (11011)2= (111101)2. Or(34)10+ (27)10= (61)10, vérifions si(61)10= (111101)2.

20 +1= 1

21 +1= 3

23 +1= 7

27 +1= 15

215 +0= 30

230 +1= 61

On a bien(61)10= (111101)2, le résultat obtenu en binaire est bien conforme au résultat obtenu en base10.

Exercice 3Écrire(90)10et(97)10en binaire puis effectuer l"opération en binaire(90)10(97)10et vérifier

que le résultat obtenu est le bon.Convertissons tout d"abord90en binaire. Cela donne

90 = 245 +0

45 = 222 +1

22 = 211 +0

11 = 25 +1

5 = 22 +1

2 = 21 +0

1 = 20 +1

3 On a donc(90)10= (1011010)2. Convertissons maintenant97en binaire. On a

97 = 248 +1

48 = 224 +0

24 = 212 +0

12 = 26 +0

6 = 23 +0

3 = 21 +1

1 = 20 +1

et(97)10= (1100001)2. On effectue maintenant la multiplication de(1011010)2par(1100001)2. Pour rappel,

la multiplication en binaire fonctionne de la manière suivante01 000 101

D"où l"opération suivante

1 0 1 1 0 1 0

1 1 0 0 0 0 11 0 1 1 0 1 0

+ 0 0 0 0 0 0 00 + 0 0 0 0 0 0 00 0 + 0 0 0 0 0 0 00 0 0 + 0 0 0 0 0 0 00 0 0 0 + 1 0 1 1 0 1 00 0 0 0 0 + 1 0 1 1 0 1 00 0 0 0 0 0= 1

10101011101010 0 1 1 0 1 0

On a(1011010)2(1100001)2= (10001000011010)2. Or(90)10(97)10= (8730)10, vérifions si(8730)10= (10001000011010) 2.

20 +1= 1

21 +0= 2

22 +0= 4

24 +0= 8

28 +1= 17

217 +0= 34

234 +0= 68

268 +0= 136

2136 +0= 272

2272 +1= 545

2545 +1= 1091

21090 +0= 2182

22182 +1= 4365

24365 +0= 8730

On a bien(8730)10= (10001000011010)2, le résultat obtenu en binaire est bien conforme au résultat obtenu

en base10. 4

Exercice 4Si on dispose de4bits (bit de signe compris), quelles valeurs peuvent prendre les entiers codés

sur ces4bits?Si on dispose de4bits dont1de signe, il ne reste plus que3bits pour coder les entiers naturels (ceux plus

grand que0). Ils ne peuvent donc prendre que23valeurs distinctes dont la valeur0. Les entiers naturels

codés sont ainsi0,1,2,3,4,5,6, et7 = 231. Maintenant, si on tient compte du bit de signe, les entiers

codés devraient pouvoir varier entre7et7.

Cependant deux combinaisons auraient la même valeur0:1000et0000, le chiffre en gras désigne ici le bit

de signe. Pour éviter cette redondance, on pose1000 =8(classiquement, le signe de bit lorsqu"il vaut1

indique un nombre négatif).

Finalement, si on dispose de4bits (bit de signe compris), on peut coder les entiers de valeurs comprises

entre8 =23et7 = 231.

Exercice 5Vérifier l"égalité entre(9;90625)10et(1001;11101)2.On distingue la partie entière et la partie décimale à traiter. On vérifier tout d"abord que(9)10= 10012, en

effet9 = 24 +1

4 = 22 +0

2 = 21 +0

1 = 20 +1

On a donc

9;90625 = 231+ 220+ 210+ 201+ 0;90625

Mais on a aussi

9;90625 = 231+ 220+ 210+ 201+ 21(20;90625)

9;90625 = 231+ 220+ 210+ 201+ 211;8125

9;90625 = 231+ 220+ 210+ 201+ 21(1+ 0;8125)

On vient donc de calculer le premier chiffre après la virgule de9;90625en binaire (soit ici1). On réitère le

même processus pour avoir le chiffre après la virgule suivant

9;90625 = 231+ 220+ 210+ 201+ 211+ 22(20;8125)

9;90625 = 231+ 220+ 210+ 201+ 211+ 221;625

9;90625 = 231+ 220+ 210+ 201+ 211+ 22(1+ 0;625)

Le deuxième chiffre après la virgule (en binaire) est donc1. Voici enfin directement, les traces des calculs

pour obtenir tous les chiffres nécessaires après la virgule

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231;25

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 23(1+ 0;25)

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231+ 240;5

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231+ 240+ 25(20;5)

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231+ 240+ 251

On vérifie donc bien que(9;90625)10= (1001;11101)2. 5 Chapitre 2 : Résolution d"équations non-linéaires Exercice 6On définit la méthode du point fixe suivante x0fixé dans[a;b] x n+1=g(xn)

On suppose que cette suite admet une limite sur[a;b]notéel. Cette méthode est d"ordrepsijxn+1ljjxnljp

admet une limite réelle strictement positive lorsquentend vers l"infini.

On supposeg pfois dérivable sur[a;b]. En utilisant la formule de Taylor, montrer que la méthode est d"ordre

psi et seulement si g

0(l) =g00(l) =:::=g(p1)(l) = 0 etg(p)(l)6= 0On rappelle tout d"abord la formule de Taylor.

Soitk1un entier et soitfune fonction deRdansRkfois dérivable ena2R, alors il existe une fonction kdeRdansRtel que f(x) =f(a) +f0(a)(xa) +f00(a)(xa)22 +:::+f(k)(a)(xa)kk!+k(x)(xa)k et limx!ak(x) = 0 Maintenant, sigestpfois dérivable sur[a;b], on peut écrire que g(xn) =g(l) +g0(l)(xnl) +g00(l)(xnl)22 +:::+g(p)(l)(xnl)pp!+p(x)(xnl)p avec limx n!lp(xn) = 0

Posonsen=xnl, on axn+1=g(xn)et

e n+1=g(xn)g(l) =g0(l)(xnl) +g00(l)(xnl)22quotesdbs_dbs48.pdfusesText_48
[PDF] analyse numérique exercices et problèmes corrigés pdf

[PDF] analyse numérique matricielle cours et exercices corrigés pdf

[PDF] analyse pestel bricolage

[PDF] analyse pestel castorama

[PDF] analyse s1 smia pdf

[PDF] analyse secteur immobilier maroc

[PDF] analyse spectre rmn

[PDF] analyser un document en svt

[PDF] analyser un document histoire terminal e&s

[PDF] analyses medicales pdf

[PDF] anatole france belvedere casablanca

[PDF] anatole france casablanca fourniture

[PDF] anatole france college

[PDF] anatomia corpului uman pdf

[PDF] anatomia omului 3d