[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



Cours de mathématiques pour la classe de Seconde

xA; yB − yA) du vecteur −−→. AB. – Calculer les coordonnées de la somme de deux vecteurs dans un repère. A tout point C du plan on 



Chapitre 8 : Vecteurs

Attention : cette formule est fausse dans un repère non orthonormé ! 13 /16. Page 14. Vecteurs-cours. Seconde. Exercice 16. Dans un repère orthonormé 



3e-Maths-fascicule-exos-Babacar-DIARRA.pdf

EXERCICE 9: EXERCICE 10: A. B. C. D. E. F. G. Page 56. REUSSIR LES MATHEMATIQUES AU BFEM. BABACAR DIARRA. 56. Correction série d'exercices Vecteurs. EXERCICE 1 



Introduction aux probabilités et à la statistique Jean Bérard

Ce cours est entre autres un cours de mathématiques où s'imposent donc des normes élevées de Exercice 56 Au cours de débats portant sur l'utilité (ou l' ...



Python au lycée - tome 1

La première ligne importe toutes les fonctions du module math la seconde calcule x = 2 (en valeur cours. Par exemple : la moyenne mobile (à 7 jours) pour le ...



FINALE FASCICULE MATHS 3EME ok

3. Ecrire une équation et calculer les dimensions de la cour. Page 13. Recueil d'exercices.



fascicule-de-Maths-4ieme-Quaterieme-Adem-Dakar.pdf

Voici la répartition de la seconde langue des élèves d'un lycée de 1200 élèves. TRANSLATIONS ET VECTEURS. Exercice 1. Soit un segment [AB] et I son milieu. 1 ...



Exercices et Contrôles Corrigés de Mécanique du Point Matériel

Quel est son vecteur rotation par rapport `a R? En utilisant les résultats précédents calculer la dérivée par rapport au temps des vecteurs de la base 



Exercices de physique-chimie Seconde

Calculer la norme du vecteur position OM et en déduire la trajectoire du point M. Exercice 10. Dans le calendrier musulman l'événement origine est l'Hégire



cours-3ieme-et-exercices-Babacar-DIARRA.pdf

C'est dans ce sens qu'il faut comprendre notre document intitulé : Réussir les maths au BFEM. Ce présent document est axé sur tout le programme de la 3ème avec 



cours-3ieme-et-exercices-Babacar-DIARRA.pdf

COURS ET EXERCICE MATHEMATIQUES. BABACAR DIARRA. 1. Racine carrée. Equation et Inéquation du premier degré à une inconnue. Equation et système d'équations 



FINALE FASCICULE MATHS 3EME ok

d'exercices de Mathématiques PROGRAMME DE MATHEMATIQUES EN CLASSE DE 3 ... Construction d'un vecteur d'origine A et égal au vecteur u + v de deux façons ...



Math 3 A5

Première partie : résumé du cours par chapitre ; vecteur ou C est le point d'abscisse k dans le repère (AB). Ou encore : ... Exercice 1 : (5points).



REPUBLIQUE DU SENEGAL Un peuple Un but Une foi 182

REUSSIR LES MATHEMATIQUES AU BFEM. BABACAR DIARRA. 6. Correction série d'exercices racine carrée. EXERCICE 1 : 1) Faux 2)Faux 3) vrai 4) vrai 5) faux 6) 



Exercices de mathématiques - Exo7

Exercice 1. Soit P un plan muni d'un repère R(Oi



fascicule-de-Maths-4ieme-Quaterieme-Adem-Dakar.pdf

Fascicule MATHEMATIQUES – 4ème TRANSLATIONS ET VECTEURS. ... Les exercices de chaque chapitre sont proposés dans un ordre respectant la gradation des ...



Cours de mathématiques pour la classe de Seconde

Cours de mathématiques pour la classe de Seconde 12 Vecteurs repérage ... En seconde



Introduction aux probabilités et à la statistique Jean Bérard

Des commentaires sur les exercices sont également proposés. Rappelons à toutes fins utiles que la solution d'un exercice doit être relue en grand détail de.



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

activement par vous-même des exercices sans regarder les solutions ! translation de vecteur Ti



Mathématiques

classe de seconde de poursuivre l'entraînement des élèves dans ce domaine par la pratique Le programme n'est pas un plan de cours et ne contient pas de ...

Exercices de mathématiques - Exo7 Exo7

Droites du plan ; droites et plans de l"espace

Fiche corrigée par Arnaud Bodin

1 Droites dans le plan

Exercice 1SoitPun plan muni d"un repèreR(O;~i;~j), les points et les vecteurs sont exprimés par leurs coordonnées dans

R. 1.

Donner un v ecteurdirecteur ,la pente une équation paramétrique et une équation cartésienne des droites

(AB)suivantes : (a)A(2;3)etB(1;4) (b)A(7;2)etB(2;5) (c)A(3;3)etB(3;6) 2.

Donner des équations paramétriques et cartésiennes des droites passant par Aet dirigées par~vavec :

(a)A(2;1)et~v(3;1) (b)A(0;1)et~v(1;2) (c)A(1;1)et~v(1;0) 3. Donner des équations paramétriques et cartésiennes des droites définies comme suit : (a) passant par le point (0;4)et de pente 3, (b) passant par le point (2;3)et parallèle à l"axe desx, (c) passant par le point (2;5)et parallèle à la droiteD: 8x+4y=3. On considère le triangleABCdont les côtés ont pour équations(AB):x+2y=3;(AC):x+y=2;(BC):

2x+3y=4.

1.

Donner les coordonnées des points A;B;C.

2. Donner les coordonnées des milieux A0;B0;C0des segments[BC],[AC]et[AB]respectivement. 3. Donner une équation de chaque médiane et vérifier qu"elles sont concourantes. Montrer qu"il existe un pointM0équidistant de toutes les droitesDl.

Exercice 4

Déterminer le projeté orthogonal du pointM0(x0;y0)sur la droite(D)d"équation 2x3y=5 ainsi que son

symétrique orthogonal. Exercice 51.T rouverune équation du plan (P)défini par les éléments suivants. (a)A,BetCsont des points de(P) i.A(0;0;1),B(1;0;0)etC(0;1;0). ii.A(1;1;1),B(2;0;1)etC(1;2;4). (b)Aest un point de(P),~uet~vsont des vecteurs directeurs de(P) i.A(1;2;1),~u(4;0;3)et~v(1;3;1). ii.A(1;0;2),~u(2;1;3)et~v(1;4;5). (c)Aest un point de(P),Dest une droite contenue dans(P) i.A(0;0;0)et(D):x+yz+3=0

4xy+2z=0

ii.A(1;1;0)et(D):8 :x=t y=1+2t z=13t (d)DetD0sont des droites contenues dans(P) i.(D):x+yz+3=0 xy2=0et(D0):3xyz+5=0 x+yz+1=0 ii.(D):x+2yz+1=0 x+3y+z4=0et(D0):2x+y3z+7=0

3x+2y+z1=0

2. Montrer que les représentations paramétriques sui vantesdéfinissent le même plan : 8< :x=2+s+2t y=2+2s+t z=1stet8 :x=1+3s0t0 y=3+3s0+t0 z=12s0 On considère la famille de plans(Pm)m2Rdéfinis par les équations cartésiennes : m

2x+(2m1)y+mz=3

1. Déterminer les plans Pmdans chacun des cas suivants : (a)A(1;1;1)2Pm (b)~n(2;52 ;1)est normal àPm. (c)~v(1;1;1)est un vecteur directeur dePm 2. Montrer qu"il e xisteun unique point Qappartenant à tous les plansPm. 2 1.

Déterminer la distance du point Aau plan(P)

(a)A(1;0;2)et(P): 2x+y+z+4=0. (b)A(3;2;1)et(P):x+5y4z=5. 2. Calculer la distance du point A(1;2;3)à la droite(D):2x+y3z=1 x+z=1 1. On considèrelepointA(2;4;1), lesvecteurs!u(1;1;1);!v(2;2;4),!w(3;1;1)etlerepère(A;!u;!v;!w).

On notex0;y0etz0les coordonnées dans ce repère. Donner les formules analytiques du changement de

repère exprimantx;y;zen fonction dex0;y0;z0. 2.

On considère la droite (D):yz=3

x+y=2. Utiliser le changement de repère pour donner une équation deDdans le repère(A;!u;!v;!w). 3. Donner les formules analytiques du changement de repère in verse. 1. Définir analytiquement la projection orthogonale sur le plan d"équation 2 x+2yz=1. 2. Définir analytiquement la projection orthogonale sur la droite d"équation x+y+z=1

2xz=2.

3. Donner l"e xpressionanalytique de la projection sur le plan (P)contenant le pointC(2;1;1)et ayant pour vecteurs directeurs~u(0;1;1)et~u0(2;0;1), selon la droite(AB), oùA(1;1;0)etB(0;1;3).

Indication pourl"exer cice2 NLes médianes sont les droites(AA0),(BB0),(CC0).Indication pourl"exer cice3 NLadistanced"unpointM0(x0;y0)àunedroiteDd"équationax+by+c=0estdonnéeparlaformuled(M0;D)=

jax0+by0+c0jpa

2+b2.4

Correction del"exer cice1 N1.(a) Un v ecteurdirecteur est !ABdont les coordonnées sont(xBxA;yByA) = (3;1). Pour n"importe quel vecteur directeur~v= (xv;yv)la pente est le réelp=yvx v. La pente est indépendante du choix du vecteurdirecteur. Ontrouveicip=13 . Uneéquationparamétriquedeladroitedevecteurdirecteur ~vpassant parA= (xA;yA)est donnée parx=xvt+xA y=yvt+yA:Donc ici pour le vecteur directeur!AB on trouve l"équation paramétrique x=3t+2 y=t+3 Il y a plusieurs façons d"obtenir une équation cartésienneax+by+c=0.

Première méthode.On sait queA= (xA;yA)appartient à la droite donc ses coordonnées vérifient

l"équationaxA+byA+c=0, idem avecB. On en déduit le système2a+3b+c=0 a+4b+c=0:Les

solutions s"obtiennent à une constante multiplicative près, on peut fixera=1 et on trouve alors

b=3 etc=11. L"équation est doncx+3y11=0. (b)

On trouv e~v=!AB= (5;3),p=35

etx=5t7 y=3t2 ainsi x+75 =t y+23 =tOn en déduitx+75 =y+23 ; d"où l"équation 3x+5y+31=0. (c) On trouve~v=!AB=(0;3), ladroiteestdoncverticale(sapenteestinfinie)uneéquationparamétrique estx=3 y=3t+6. Une équation cartésienne est simplement(x=3). 2. (a)

Equation paramétrique

x=3t+2 y=t+1 Troisième méthode.Pour une droite d"équation cartésienneax+by+c=0, on sait que~n= (a;b) est un vecteur normal à la droite et donc~v= (b;a)est un vecteur directeur (car alors~v~n=

0). Réciproquement si~v= (b;a)est un vecteur directeur alors une équation est de la forme

ax+by+c=0 pour une certaine constantecà déterminer. Ici on nous donne le vecteur directeur~v= (3;1)donc on cherche une équation sous la forme x+3y+c=0. Pour trouverc, on utilise queAappartient à la droite doncxA+3yA+c=0, ce qui conduit àc=1. Ainsi une équation de la droite estx+3y=1. (b)

On trouv e2 xy+1=0.

(c)

Droite horizontale d"équation (y=1).

3.

V oicijuste les résultats :

(a)y=3x+4, (b)y=3, (c)

8 x+4y=4 (les droites parallèles à 8x+4y=3 sont de la forme 8x+4y=c).Correction del"exer cice2 N1.Le point Aest l"intersection des droites(AB)et(AC). Les coordonnées(x;y)deAsont donc solutions du

système :x+2y=3 x+y=2donné par les équations des deux droites. La seule solution est(x;y) = (1;1). On a doncA= (1;1). On fait de même pour obtenir le pointB= (1;2)etC= (2;0). 2. Notons A0lemilieude[BC]alorslescoordonnéessetrouventparlaformulesuivanteA0=(xB+xC2 ;yB+yC2 12 ;1). De même on trouveB0= (32 ;12 )etC0= (0;32 5

3.(a) Les médianes ont pour équations : (AA0):(y=1);(BB0):(3x+5y=7);(CC0):(3x+4y=6).

(b)

Vérifions que les trois médianes sont concourantes (ce qui est vrai quelque soit le triangle). On

calcule d"abord l"intersectionI= (AA0)\(BB0), les coordonnées du pointId"intersection vérifient

donc le systèmey=1

3x+5y=7. On trouveI= (23

;1).

Il ne reste plus qu"à vérifier queIappartient à la droite(CC0)d"équation 3x+4y=6. En effet

3xI+4yI=6 doncI2(CC0).

Conclusion : les médianes sont concourantes au pointI= (23

;1).Correction del"exer cice3 NNous savons que la distance d"un pointM0(x0;y0)à une droiteDd"équationax+by+c=0 est donnée par la

formuled(M0;D) =jax0+by0+c0jpa 2+b2. Pour une droiteDlla formule donne :d(M0;Dl) =j(1l2)x0+2ly0(4l+2)jp(1l2)2+4l2.

Analyse.

On cherche un pointM0= (x0;y0)tel que pour toutl,d(M0;Dl) =koùk2Rest une constante.

L"égalitéd(M0;Dl)2=k2conduit à

(1l2)x0+2ly0(4l+2) 2=k2 (1l2)2+4l2

pour toutl2R. Nos inconnues sontx0;y0;k. On regarde l"égalité comme une égalité de deux polynômes en

la variablel.

Pour ne pas avoir à tout développer on raffine un peu : on identifie les termes de plus haut degré enl4:

x

20l4=k2l4doncx20=k2.

En évaluant l"égalité pourl=0 cela donne(x02)2=k2. On en déduit(x02)2=x20dont la seule solution

estx0=1. Ainsik=1 (cark>0). L"égalité pourl= +1 donne(2y06)2=4k2et pourl=1 donne(2y0+2)2=4k2. La seule solution est y 0=2.

Synthèse.Vérifions que le point de coordonnéesM0= (1;2)est situé à une distancek=1 de toutes les droites

D l.

Pour(x0;y0) = (1;2), on trouve :d(M0;Dl) =j(1l2)+4l(4l+2)jp(1l2)2+4l2=jl2+1jp(l2+1)2=jl2+1jjl2+1j=1. DoncM0= (1;2)

est bien équidistant de toutes les droitesDl.Correction del"exer cice4 N(D)est une droite de vecteur normal~n= (2;3). Le projeté orthogonalp(M0)deM0sur(D)est de la forme

M

0+l:~noùlest un réel à déterminer. Le pointM0+l:~na pour coordonnées(x0+2l;y03l).

M

0+l:~n2(D)()2(x0+2l)3(y03l) =5()l=2x0+3y0+513

p(M0)a pour coordonnéesx0+22x0+3y0+513 ;y032x0+3y0+513 ou encorep(M0) =9x0+6y0+1013 ;6x0+4y01513 autrement dits(M0) =M0+2l:~n(pour lelobtenu ci-dessus). Ses coordonnées sont doncs(M0) =x0+42x0+3y0+513 ;y062x0+3y0+513 ou encore5x0+12y0+2013 ;12x05y03013 .Correction del"exer cice5 N6

1.(a) Une équation d"un plan est ax+by+cz+d=0. Si un point appartient à un plan cela donne une

condition linéaire sura;b;c;d. Si l"on nous donne trois point cela donne un système linéaire de

trois équations à trois inconnues (car l"équation est unique à un facteur multplicatif non nul près).

On trouve :

i.x+y+z1=0 ii.

3 x+3y+z7=0

(b)~n=~u^~vest normal au plan. Si~n= (a;b;c)alors une équation du plan estax+by+cz+d=0. On trouve : i.9x+7y+12z17=0 ii.

17 x+13y7z3=0

(c) T rouverdeux points B;Cde la droiteD. Le vecteurs~u=!ABet~v=!ACsont des vecteurs directeurs deP. Procédé ensuite comme la question précédente. On obtient : i. P are xempleB= (0;6;3)etC= (1;0;2)appartiennent àD. On trouve l"équation 4x y+2z=0. ii. P are xempleB= (0;1;1)(poutt=0) etC= (1;1;2)(pourt=1) appartiennent àD. On trouve l"équation 2xy1=0. (d) T rouverun point AdeDet deux pointsB;Cde la droiteD0. Le vecteurs~u=!ABet~v=!ACsont des vecteurs directeurs deP. Puis procédé comme avant. 2. Les plans sont définis paramétriquement par (P):(2;2;1)+s(1;2;1)+t(2;1;1)donc deux des vecteurs directeurs sont~u= (1;2;1)et~v= (2;1;1). Un vecteur normal à(P)est alors~n=~u^~v= (1;1;3). Pourleplan(P0)définipar(1;3;1)+s0(3;3;2)+t0(1;1;0), ilapourvecteursdirecteurs~u0=(3;3;2) et~v0= (1;1;0). Un vecteur normal à(P0)est alors~n0=~u0^~v0= (2;2;6).

Les vecteurs normaux~net~n0sont colinéaires donc les plans(P)et(P0)sont parallèles (ou confondus).

Maintenant le pointA= (2;2;1)appartient à(P)(on a faits=0 ett=0). Il appartient aussi à(P0)(en prenants0=0 ett0=1).

Bilan.(P)et(P0)sont parallèles et ont un point commun : ils sont égaux !Correction del"exer cice6 N1.(a) Un point Aappartient à un plan d"équationax+by+cz+d=0 si et seulement siaxA+byA+

cz A+d=0. DoncA(1;1;1)2Pmsi et seulement sim2+(2m1)+m=3. Ce qui équivaut à m

2+3m4=0. Les deux solutions sontm=1 etm=4. DoncAappartient aux plansP1etP4

quotesdbs_dbs28.pdfusesText_34
[PDF] Cours de mathématiques

[PDF] Mecanique industrielle de construction et d 'entretien

[PDF] Programme de filière - FMPO

[PDF] PACES - Université Toulouse III - Paul Sabatier

[PDF] Collège des Enseignants Hopsitalo-Universitaires de Médecine et

[PDF] guide pratique de l 'interne en médecine générale ? lyon - SyReL-IMG

[PDF] LA MEDECINE LEGALE AU MAROC : Etat des lieux et propositions

[PDF] Programme d 'étude medecine

[PDF] Mesures électriques - Université technique de Sofia - #1058 #1059 - #1057 #1086 #1092 #1080 #1103

[PDF] Méthodologie de recherche en sciences de gestion - HIGH-TECH

[PDF] Manuel de l 'étude de prix

[PDF] Introduction ? la microbiologie alimentaire

[PDF] Cours de microbiologie générale avec problèmes et exercices

[PDF] Introduction ? la microbiologie industrielle

[PDF] Rappel de microbiologie médicale - Pharmacie - UCL-Bruxelles