[PDF] Exercices de probabilités avec éléments de correction Memento





Previous PDF Next PDF



Cours de probabilités et statistiques

2.3 Schéma de Bernoulli et loi binomiale . S'il sont de probabilité non nulle alors ... preuve : pour le premier point



Cours et exercices corrigés en probabilités

2.10 Approximation de la loi binomiale par la loi de Poisson . Le premier chapitre est un rappel sur le calcul des probabilités.



Exercices de probabilités avec éléments de correction Memento

Fonction génératrice (si X à valeurs dans N) : GX(s) = E[sX] = ? Exercice 1. Lois ... 2.a) Montrer que Sn suit la loi binomiale de paramètres n et p ...



7 Lois de probabilité

La variable aléatoire X suit une loi Binomiale de paramètres n et ? notée Bin (n



LOI BINOMIALE – Feuille dexercices

Exercice 4 : on lance trois fois successivement une pièce truquée de sorte que la probabilité d'obtenir Pile est. 075 et on s'intéresse au nombre de Pile 



Loi binomiale.

Loi binomiale. Exercices fiche 1 Reconnaître la loi de probabilité suivie par X et donner ses paramètres. ... Exercice 4. QCM et loi binomiale.



Exercices Corrigés Statistique et Probabilités

Exercice 1 . Codification : S : Sport C : Cinéma



1 ES L AP Loi binomiale 2 : Exercice 1

1. Préciser la loi de probabilité suivie par . 2. Calculer l'espérance de . Interpréter. 3. En déduire la recette moyenne réalisée 



Loi binomiale.

Loi binomiale. Exercices Fiche 2. Exercice 1. Loi de probabilité et espérance. Lors d'une loterie un joueur mise 1€. S'il gagne la partie



1 Loi binomiale

1 Loi binomiale. Exercice 1. Combien de fois faut-il lancer un dé pour faire au moins un six avec une probabilité supérieure ou égale à 095 ?

Université Paris 13, Institut Galilée Préparation à l"agrégation

Année universitaire 2013-2014

Exercices de probabilités

avec éléments de correctionMemento

Fonctions associées aux lois

PourXvariable aléatoire à valeurs dansRd,

F onctionde répartition (si d= 1) :FX(t) =P(Xt),t2R F onctiongénératrice (si Xà valeurs dansN) :GX(s) =E[sX] =P1 n=0P(X=n)sn,s2 j R;Rj T ransforméede Laplace : LX() =E[eh;Xi]2]0;+1],2Rd F onctioncaractéristique : X(t) =E[eiht;Xi]2C,t2Rd Lois discrètesNomParamètresSupportDéfinition :P(A) =P

a2Ap(a)Loi de Diracaa2Rfagp(a) = 1Loi de BernoulliB(p)p2[0;1]f0;1gp(0) = 1p,p(1) =pLoi binomialeB(n;p)n2N,p2[0;1]f0;:::;ngp(k) =n

kpk(1p)nkLoi géométriqueG(p)p2]0;1]N p(k) = (1p)k1pLoi de PoissonP()2]0;+1[Np(k) =ekk!Lois continues

NomParamètresSupportDéfinition :P(A) =R

Af(x)dxLoi uniformeU([a;b])a < b[a;b]f(x) =1ba1[a;b](x)Loi exponentielleE()2]0;1[]0;+1[f(x) =ex1]0;+1[(x)Loi de Cauchya2]0;+1[Rf(x) =a(a2+x2)Loi normale/gaussienneN(m;2)m2R; 22]0;+1[Rf(x) =1p22exp

(xm)222Déterminer des lois : exemples

Exercice 1.Lois binomiale et géométrique

SoitX1;X2;:::une suite de variables aléatoires indépendantes et de loiB(p)oùp2[0;1].

1.On supposep >0. On définitN= inffn1jXn= 1g.

1.a)Montrer queP(N=1) = 0et queNsuit la loi géométrique de paramètrep.

1.b)Calculer l"espérance et la variance deN.

2.Soitn1. On définitSn=X1++Xn.

2.a)Montrer queSnsuit la loi binomiale de paramètresnetp, par une preuve directe puis en utilisant des

fonctions génératrices.

2.b)Calculer l"espérance et la variance deSn(utiliser la définition deSn).

Exercice 2.Minimum et maximum d"une famille de variables aléatoires exponentielles

SoitX;Ydeux variables aléatoires indépendantes de lois respectivesE()etE(). À l"aide de fonctions de

répartition, déterminer les lois deU= min(X;Y)etV= max(X;Y). On précisera leur densité (le cas échéant).

Exercice 3.Somme de variables aléatoires

1.SoitX;Ydes variables aléatoires indépendantes de loisP()etP(). Déterminer la loi deX+Y, directement

puis via les fonctions génératrices.

2.SoitX;Ydes variables aléatoires indépendantes de loi de Cauchy de paramètreaetb. À l"aide des fonctions

caractéristiques, déterminer la loi deX+Y.Pour obtenirX, on pourra utiliser la formule de Cauchy avec un

contour bien choisi, ou alors avoir l"idée de calculer la fonction caractéristique de la loi de Laplace

a2 eajxjdx et utiliser la formule d"inversion.

Exercice 4.Lois images

1.SoitXune variables aléatoire de loiE(). Déterminer la loi debXc+ 1.C"est une loi géométrique.

2.SoitUune variable aléatoire de loiU([1;1]). Déterminer la loi dearcsin(U).

3.SoitXde loiN(0;1). Déterminer la loi dejXj.

1

4.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). Déterminer la loi deXY

. En déduire la loi de 1Z siZsuit une loi de Cauchy de paramètre 1.

5.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). On définit les variables aléatoiresR;par

(X;Y) = (Rcos;Rsin),R >0et2[0;2[. Montrer queRetsont indépendantes et déterminer leurs lois.

Exercice 5.Loi Gamma

Poura >0et >0, on définit la loi

a;par sa densité relativement à la mesure de Lebesgue : f a;(x) =a(a)xa1ex1R+(x):

1.Vérifier que cette fonction définit bien une densité.

2.Déterminer l"espérance de cette loi.On utilise le fait que(a+ 1) =a(a)pour obtenir que l"espérance de cette loi esta=.

3.SoitV1;V2;:::;Vndes variables aléatoires réelles indépendantes de loiE(). Déterminer la loi du vecteur

(V1;V1+V2;:::;V1++Vn)et en déduire queV1++Vn n;.Pourn= 1, ok. Supposonsn2etS:=V1+:::+Vn1de loi n1;. Soitgune fonction mesurable bornée deRdansR. On a

E(g(V1+:::+Vn)) =E(g(S+Vn)) =Z

R g(x+y)dP(S;Vn)(x;y) et

E(g(V1+:::+Vn)) =Z

R g(t)dPV1+:::+Vn(t): Commef(v1;:::;vn1) =v1+:::+vn1etg(vn) =v2nmesurables on en déduit queSetVnsont indépen- dantes car(V1;:::;Vn1)etVnle sont, Z R g(x+y)dP(S;Vn)(x;y) =Z 1 0 dxZ 1 x dtg(t)n1(n1)etxn2 Z 1 0 g(t)n1(n1)etxn1=(n1)t 0dt Z R g(t)n(n)exp(t)tn11R+(t)dt

4.SoitXetYdeux variables aléatoires réelles indépendantes de loi

a;.

4.a)Déterminer la loi deX.On peut utiliser la fonction de répartition. Avec un changement de variable on voit queX

a;1.

4.b)Montrer queX+YetX=Ysont des v.a. indépendantes dont on calculera les lois.Soitgune fonction mesurable bornée deR2dansR2. On a

E(g(X+Y;X=Y)) =Z

R

2g(u;v)dP(X+Y;X=Y)(u;v)

et

E(g(X+Y;X=Y)) =Z

R

2gf(x;y)dP(X;Y)(x;y)

oùf(x;y) = (x+y;x=y)définie de(R+)2vers(R+)2. Comme les variablesXetYsont indépendantes, le couple(X;Y)a pour densitédPX(x)dPY(y)par rapport à la mesure de Lebesgue surR2. On fait alors le changement de variableu=x+y,v=x=y, pourx >0ety >0; Ceci est équivalent àx=uv=(v+ 1)ety=u=(v+ 1)pouru >0etv >0.

On a de plusjJ(u;v)j=v=(v+ 1)u=(v+ 1)

1=(v+ 1)u=(v+ 1)2

=u(v+ 1)2. Il suit

E(g(X+Y;X=Y)) =Z

R

2g(u;v)u2a1eu1u>0va1(v+ 1)2a1v>02a(a)2dudv:

2 Les variables sont indépendantes,dPX+Y(u) =2a(2a)u2a1eu1u>0duetdPX=Y(v) = (2a)(a)2v a1(v+ 1)2a1v>0dv.

4.c)Montrer queX+YetX=(X+Y)sont des v.a. indépendantes. Calculer la loi deX=(X+Y).Soitgune fonction mesurable bornée deR2dansR2. On a

E(g(X+Y;X=(X+Y))) =Z

R

2g(u;v)dP(X+Y;X=(X+Y))(u;v)

et

E(g(X+Y;X=(X+Y))) =Z

R

2gf(x;y)dP(X+Y;X=(X+Y))(x;y)

oùf(x;y) = (x+y;x=(x+y))définie de(R+)2vers(R+)2. Comme les variablesXetYsont indépendantes,

le couple(X;Y)a pour loidPXdPY=fa;(x)fa;(y)dxdy. On fait alors le changement de variableu=x+y,v=x=(x+y), pourx >0ety >0; Ceci est équivalent àx=uvety=u(1v)pouru >0etv2(0;1).

On a de plusjJ(u;v)j=v u

1vu =u. Il suit

E(g(X+Y;X=(X+Y))) =Z

R Les variables sont donc indépendantes et on a de plusdPX=(X+Y)(v) =(2a)(a)2(v(1v))a1105.SoitXetYdeux variables aléatoires réelles indépendantes de loi a;et b;respectivement. Déterminer la loi deX+Y.Le seul point délicat est de calculer Rt

0xa1(tx)b1dx=ta+b1R1

0ya1(1y)b1dy=ta+b1Ca;b. La

constanteCa;best forcément égale à(a)(b)=(a+b)en tenant compte de la normalisation.

6.SoitZ1;Z2;:::;Zndes variables aléatoires réelles indépendantes de loiN(0;1).

6.a)Montrer queZ21suit une loi

1=2;1=2.SiZ1est de loiN(0;1)etgune fonction mesurable bornée deRdansR, on a

E(g(X2)) =Z

R g(u)dPX2(u)E(g(X2)) =Z R g(x2)dPX(x) =1p2Z R g(x2)ex2=2dx:

Par parité dex7!g(x2)ex2=2on aE(g(X2)) =2p2R

1

0g(x2)ex2dx=2p2R

1

0g(y)ey=2dy2

py donc dP

X2(y) =1p2ey=2y1=21R+(y)dy.

6.b)Montrer queZ21++Z2nsuit une loi

n=2;1=2.La loi n=2;1=2est également appelée loi du khi-deux àn

degrés de liberté, notée2n.On le montre par récurrence. Pourn= 1c"est vrai. Supposons queSn1=Z21+:::+Z2n1

n12 ;12 et Z n N(0;1). On aSn=Sn1+Z2n. Commef(z1;:::;zn1) =z21+:::+z2n1etg(xn) =z2nmesurables on

en déduit queSn1etZ2nsont indépendantes car(Z1;:::;Zn1)etZnle sont. On utilise ensuite la question

5 donnant queSnsuit une

n12 +12 ;12 n2 ;12

Propriétés générales

Exercice 6.Conséquences du théorème de Fubini, fonctions indicatrices

Résoudre les questions suivantes en appliquant le théorème de Fubini(-Tonelli) de la façon suggérée.

1.SoitNune variable aléatoire à valeurs dansN. Montrer que

E[N] =X

n1P(Nn): 3 On note que, commeNest à valeurs entières,N=PN k=11 =P1 k=11fkNg. Le théorème de Fubini-Tonelli donne

E[N] =E"

1X k=11 fkNg# =1X k=1E[1fkNg] =1X k=1P(kn):

Le théorème de Fubini est ici appliqué à la fonction(n;!)7!1fkN(!)gpar rapport à la mesure produit

m N P, oùmNest la mesure de comptage surN:mN(A) = Card(A)siAN(et doncRfdmN=P n2Nf(n)

pourf:N!R). En l"occurrence, il est en fait plus simple de voir ceci comme une application du théorème

de convergence monotone pour les séries à termes positifs.

2.SoitXune variable aléatoire à valeurs dansR+, et >0. Montrer que

E[X] =Z

1 0 t1P(X > t)dt

et donner une généralisation de cette formule.On note que, commeX0, par " intégration de la dérivée »,X=RX

0t1dt=R1

01ft théorème de Fubini-Tonelli (pour la mesuredt

P) donne donc

E[X] =Z

1 0

E[1ft 1 0

P(X > t)t1dt:

Le principe de la preuve s"applique par exemple à toute fonctiongmonotone de classeC1de]0;+1[dans

R, pour laquelle on peut écrireg(X) =g(0) +RX

0g0(t)dt, d"où de même

E[g(X)] =g(0) +Z

1 0

P(X > t)g0(t)dt:

3.Soit(An)n1une suite d"événements.

3.a)On noteNle nombre (aléatoire) d"événéments parmi ceux-ci qui se produisent. CalculerE[N]en fonction

des probabilitésP(An),n1.On note queN=P1 n=11An. Par suite, par le théorème de Fubini-Tonelli (pour la mesuremN

PoùmN

est la mesure de comptage surN),

E[N] =1X

n=1E[1An] =1X n=1P(An):

3.b)On suppose queP

nP(An)<1. Montrer que presque-sûrement seul un nombre fini d"événements de la

suite ont lieu.C"est le lemme de Borel-Cantelli (partie la plus facile mais néanmoins la plus utile).Par la question précédente, l"hypothèse équivaut àE[N]<1. Or ceci implique queN <1p.s., ce qui

signifie que, presque sûrement, un nombre fini d"événement de la suite ont lieu.

4.CalculerC=R

Rex2dxsans utiliser de coordonnées polaires. (ÉcrireC2comme une intégrale double puis, dans l"intégrale,e(x2+y2)=R1 x

2+y2etdt)Par le théorème de Fubini-Tonelli,

C 2=Z 1 0 ex2dxZ 1 0 ey2dy=Z ]0;1[2e(x2+y2)dxdy: En écrivant (par une intégration immédiate)e(x2+y2)=R1 x

2+y2etdt=R1

01ft>x2+y2getdtpourx;y >0,

on a, à nouveau par le théorème de Fubini-Tonelli, C 2=Z ]0;1[2Z 1 0 1 ft>x2+y2getdtdxdy=Z 1 0 et Z ]0;1[21ft>x2+y2gdt! dxdy L"intégrale entre parenthèses est l"aire du quart de disque de rayon pt, donc vautt4 (certes, s"il fallait le

redémontrer, ceci se ferait le plus directement en passant en coordonnées polaires...). On a donc

C 2=4 Z 1 0 tetdt=4 4

(intégration par parties, ou reconnaître l"espérance de la loiE(1)pour éviter de refaire le calcul), d"oùC=p

2

On rappelle la preuve classique : partant deC2=R

]0;+1[2e(x2+y2)dxdycomme ci-dessus, il suffit d"effectuer un changement de coordonnées pour passer en coordonnées polaires ((r;)7!(rcos;rsin)est bien un difféomorphisme de]0;+1[]0;2 [sur]0;+1[2, de jacobienr7!r) : C 2=Z =2 0Z 1 0 er2rdrd=2 12 er21 r=0=4

5.SoitA1,...,Andes événements. Montrer laformule du crible, oùjSjdésigne le cardinal deS:

P(A1[ [An) =nX

k=1(1)k+1X

1i1<

Sf1;:::;ng;S6=;(1)jSj+1P\

i2SA i :Pour tous événementsAetB, on a1A\B=1A1Bet1Ac= 11A, en revanche il n"y a pas de formule aussi

simple pour la réunion, mais on peut se ramener à une intersection en passant au complémentaire :

1 A[B= 11Ac\Bc= 11Ac1Bc= 1(11A)(11B) =1A+1B1A1B=1A+1B1A\B; ce qui, en intégrant chaque membre, donneP(A[B) =P(A) +P(B)P(A\B). On généralise maintenant cette formule ànévénements. On a 1

A1[[An= 11Ac1\\Acn= 1Y

i(11Ai) = 1X

Sf1;:::;ng(1)1+jSjY

i2S1 Ai:

(où, en développant,Sdésigne l"ensemble des indices du produit où l"on garde le terme1Aiau lieu du

terme1). En prenant l"espérance de chaque terme, on obtient l"égalité demandée (l"expression avec les indices

i

jest une réécriture en utilisant l"injectionS7!(i1;:::;ik)oùk=jSj,S=fi1;:::;ikgaveci1< ::: < ik,

cette écriture étant unique). Par exemple, P(A[B[C) =P(A) +P(B) +P(C)P(A\B)P(A\C)P(B\C) +P(A\B\C):

Exercice 7.Autour de l"indépendance

1.SoitX;Y;Zdes variables aléatoires indépendantes, de loi=12

1+12

1. On noteX0=Y Z,Y0=XZet

Z

0=XY. Montrer queX0,Y0,Z0sont des variables aléatoires de loiindépendantes deux à deux, mais non

indépendantes (dans leur ensemble).On note queX0,Y0etZ0sont à valeurs dansf1;1get sont définies de manière symétrique (cyclique), donc

pour montrer l"indépendance 2 à 2 il va suffire de vérifier que

P(X0= 1;Y0= 1) =P(X0= 1)P(Y0= 1):

En effet on a ensuiteP(X0= 1;Y0=1) =P(X0= 1)P(X0= 1;Y0=1) =P(X0= 1)P(X0= 1)P(Y0=

1) =P(X0= 1)P(Y0=1), puis on a passe de même àP(X0=1;Y0=1) =P(X0=1)P(X0=

1;Y0= 1), et la symétrie induit les autres vérifications. Or on a

P(X0= 1;Y0= 1) =P(Y Z= 1;XZ= 1) =P(X=Y=Z) =P(X= 1)3+P(X=1)3=14 et P(X0= 1) =P(Y Z= 1) =P(Y= 1;Z= 1) +P(Y=1;Z=1) =P(Y= 1)2+P(Y=1)2=12 d"où l"égalité voulue.X;Y;Zsont donc indépendantes 2 à 2. En revanche, P(X0= 1;Y0= 1;Z0=1) =P(Y Z= 1;XZ= 1;XY=1) = 06=P(X0= 1)P(Y0= 1)P(Z0=1); carY Z= 1etXZ= 1impliquentX=Z=YdoncXY= 1. Ainsi,X;Y;Zne sont pas indépendantes dans leur ensemble. 5

2.Est-ce qu"un événementApeut être indépendant de lui-même? Même question pour une variable aléatoireX.Aest indépendant de lui-même si, et seulement siP(A\A) =P(A)P(A), c"est-à-direP(A) =P(A)2, ce qui

équivaut àP(A) = 0ou1: les événements négligeables et presque sûrs sont les seuls à être indépendants

d"eux-même (et de n"importe quel autre événement, d"ailleurs).

Si une v.a.Xest indépendante d"elle-même, à valeurs dans(E;E), pour toute partieA2 Eon aP(X2

A) =P(X2A;X2A) =P(X2A)2car l"événementfX2Agest indépendant de lui-même, d"où P(X2A)2 f0;1g. SiXest entière, on peut noter que1 =P n2NP(X=x)et chaque terme vaut0ou1, donc un seul vaut1: il existen2Ntel queX=npresque sûrement (on dit queXest presque sûrement

constante). Si, plus généralement,Xest à valeurs dans(R;B(R)), par le même argument, pour toutn, il

existe un unique intervalle de la forme[k2n;(k+ 1)2n[, oùk2Z, qui contientXpresque sûrement;

ces intervalles doivent être emboîtés, et leur largeur tend vers0, ce qui détermineX, doncXest constante

presque sûrement. On peut généraliser le raisonnement àRd(muni des boréliens), et à des espaces satisfaisant

quelques hypothèses naturelles, mais pas à n"importe quel espace(E;E). Entre autres, la tribu doit être assez

fine (siE=f;;Egest la tribu grossière, toutes les fonctions à valeurs dans(E;E)sont des variables aléatoires,

et elles sont toutes indépendantes d"elles-mêmes). En revanche, siEest un espace métrique complet séparable

(espace polonais), etEest la tribu borélienne, l"argument s"étend (il existe une suite(xk)kdense dansE, donc

pour toutnles boulesB(xk;2n)(k2N) recouvrentEd"où1 =P(X2E)P k2NP(d(X;xk)<2n),

or ces probabilités valent 0 ou 1, donc il existex(n)tel qued(X;x(n))<2npresque sûrement; l"inégalité

triangulaire implique que(x(n))nest une suite de Cauchy, etXest presque sûrement égal à la limite de cette

suite).

Inversement, toute variable aléatoireXconstante presque sûrement (c"est-à-dire qu"il existex2Etel que

P(X=x) = 1) est indépendante d"elle-même (et de n"importe quelle variable aléatoire).

Problèmes (simples) classiques

Exercice 8.Formule de Bayes.

1.Soit(

;P)un espace de probabilité discret, et(H1;:::;Hn)une partition de ennévénements de probabilité non nulle. Montrer que, pouri= 1;:::;n, siAest un événement de probabilité non nulle :

P(HijA) =P(AjHi)P(Hi)P

n j=1P(AjHj)P(Hj):

2.Une maladie M affecte une personne sur 1000 dans une population donnée. On dispose d"un test sanguin qui

détecte M avec une fiabilité de 99% lorsque cette maladie est effectivement présente. Cependant, on obtient

aussi un résultat faussement positif pour 0,2% des personnes saines testées. Quelle est la probabilité qu"une

personne soit réellement malade lorsque son test est positif?La population est notée , on la munit de la mesure uniformeP. On noteMl"ensemble des personnes malades,

etTl"ensemble des personnes dont le test est positif. L"énoncé donne doncP(M) = 0:001,P(TjM) = 0:99

etP(TjMc) = 0:002, et on chercheP(MjT). Comme la famille(M;Mc)partitionne la population, on peut appliquer la formule de Bayes : P(MjT) =P(TjM)P(M)P(T)=P(TjM)P(M)P(TjM)P(M) +P(TjMc)P(Mc)=99100 11000
99
100
11000
+21000
99100
=13 '33%

Ainsi, bien que le résultat soit rarement faussement positif, la rareté plus grande encore de la maladie fait

que la plupart (66%) des résultats positifs sont en fait faussement positifs, ce qui peut apparaître de prime

abord comme un paradoxe.

Exercice 9.Problèmes " avec des mots »

1.Un secrétaire vient de mettre cent lettres dans des enveloppes comportant des adresses avant de se rendre

compte que les lettres étaient nominatives. Quelle est la probabilité que pas une seule des lettres ne soit dans

la bonne enveloppe? En donner une valeur approchée.Penser à la formule du crible.Posonsn= 100. Un espace de probabilités possible est(Sn;P(Sn);P)oùPest la loi de probabilité uniforme

PsurSn. Pour2Sneti2 f1;:::;ng,(i)donne le numéro de la personne qui recevra la lettre destinée à

lai-ième personne. On noteAi=f(i) =igl"événementfla personneirecevra sa lettreg, pouri= 1;:::;n.

On chercheP((A1[ [An)c) = 1P(A1[ [An). En vue d"appliquer la formule du crible, on calcule,quotesdbs_dbs1.pdfusesText_1

[PDF] exercice probabilité seconde en ligne

[PDF] exercice probabilité surbooking

[PDF] exercice probabilité terminale es avec corrigé

[PDF] exercice produit scalaire tronc commun

[PDF] exercice programmation 3eme informatique

[PDF] exercice programmation step 7

[PDF] exercice programmation step 7 pdf

[PDF] exercice programmation vba excel

[PDF] exercice propagation d'une onde le long d'une corde

[PDF] exercice puissance 3ème pdf

[PDF] exercice puissance brevet

[PDF] exercice puissance de 10 3ème

[PDF] exercice puissance de 10 4ème

[PDF] exercice puissance de 10 ecriture scientifique

[PDF] exercice pyramide et cone de revolution