[PDF] Développements limités Développements limités. Corrections





Previous PDF Next PDF



Fiche technique sur les limites

Comparaison de la fonction logarithme avec la fonction puissance en +? et en 0. En + ? lim x?+? ln(x) x. = 



L34300HR1983PLC023187 RICO AUTO INDUSTRIES LIMITE 38

07-Mar-1983 RICO AUTO INDUSTRIES LIMITE bmjhamb@ricoauto.in. 01242824221 ... 0. 0. 0. 0. 0. 0 middle name. 0. 0. 0. 0. 0 first name. 0. 0. 0. 0. 0. 0. 0 ...



LC. Limit Cycles

On the other hand the left-hand side must be zero. For since C is a closed trajectory



Recherche de la limite lorsque x tend vers 0 de la fonction f(x) =

Un premier réflexe lorsqu'on recherche une limite peut être de remplacer x par différentes valeurs de plus en plus proche de 0. • Recherche de la limite à 



Sur La Distribution Limite Du Terme Maximum DUne Serie Aleatoire

B (x) = Je~(- pour x < 0. 1pour x > 0 ou a ddsigne une constante positive. En 1928 R. A. Fisher et L. H. C. Tippett [2] ont 6tabli que les lois limites pour.



Les Développements Limités

Généralement sont des limites de forme indéterminée. Il est toujours possible avec un change- ment de variable



Limits of functions

So yn eventually gets closer to zero than any distance we choose and stays closer. We say that the sequence has limit zero as n tends to infinity. n. 5. 10. 0.



Développements limités

Développements limités. Corrections d'Arnaud Bodin. 1 Calculs. Exercice 1. Donner le développement limité en 0 des fonctions : 1. cosx·expx à l'ordre 3.





HIMACHAL PRADESH STATE ELECTRICITY BOARD LIMITE.D (A

04-Aug-1992 vide 0/0 No. 689 dt. 19.8.92(SM}. 20.9.97. 1.5.04. 2.3.16 and promotion forefeited ...



[PDF] Fiche technique sur les limites - Lycée dAdultes

Comparaison de la fonction logarithme avec la fonction puissance en +? et en 0 En + ? lim x?+? ln(x) x = 



[PDF] developpements limités usuels

Le développement limité de MAC LAURIN au voisinage de x = 0 à l'ordre "n" pour une fonction "f" indéfiniment dérivable s'écrit : /(x) = /(0) + x/'(0) +x2



[PDF] Développements limités usuels

Les développements limités ci-dessous sont valables quand x tend vers 0 et uniquement dans ce cas Formule de Taylor-Young en 0 f(x) = x?0



[PDF] Feuille 9 Limites et continuité des fonctions

La fonction f(x) = sin(1/x) admet-elle une limite en 0? 3 Calculez limx!0 xsin(1/x) Exercice 3 Calculer les limites suivantes : a) lim x!0 sin(2x)



[PDF] MATHS 110c cHAPITRE III : NOTIONS DE LIMITES

MATHS 110c cHAPITRE III : NOTIONS DE LIMITES Nous allons dans ce chapitre reprendre ce qui a été vu au lycée sur les limites de suites et de fonctions



[PDF] Développements limités usuels en 0

Les périodicités et les symétries des fonctions trigonométriques introduisent une difficulté pour résoudre les équations du type sin x = ?



[PDF] • 4 limites indéterminées : ( ) ( ) ? × 0 • En +? ou -?

En +? ou -? une fonction rationnelle a même limite que le rapport de ses termes de plus haut degré : p n n n x p p p p n n n n x xb xa bxb xb xb



[PDF] LIMITES DE SUITES - maths et tiques

Yvan Monka – Académie de Strasbourg – www maths-et-tiques 1 LIMITES DE SUITES I Limite d'une suite géométrique 1) Suite (qn) q 0 < q



[PDF] LIMITES ET CONTINUITÉ (Partie 1) - maths et tiques

On parle de limite à gauche de 0 et de limite à droite de 0 Déterminer graphiquement des limites d'une fonction : Vidéo https://youtu be/9nEJCL3s2eU III



[PDF] Limites et continuité

Soient f et g deux fonctions telles que g(x) tend vers 0 quand x tend vers a S'il existe un intervalle ouvert I contenant a tel que pour tout x ? I f(x) ? 

Comparaison de la fonction logarithme avec la fonction puissance en +? et en 0. En + ? lim x?+? ln(x) x. = 
  • Quand la limite tend vers 0 ?

    tend vers 0 quand x tend vers +?. Si on a limx?a f (x) = 0 et si, sur DDf , g est bornée, alors on a aussi limx?a f (x)g(x) = 0. Exemple Prenons f := x ?? ? x et g := x ?? sinx + 3 cosx. On sait que fx tend vers 0 quand x tend vers 0 et on montre facilement que f est bornée.
  • Comment calculer la limite en 0 ?

    On voit que le x peut tendre vers 0 de 2 manières : par valeurs négatives (en venant de la gauche) ou positives (en venant de la droite). On rajoute x > 0 si x tend vers 0 par valeurs positives, et x < 0 si x tend vers 0 par valeurs négatives. Cela revient au même, 0+ signifie x > 0, et 0 signifie x < 0.
  • Quelle est la limite de n ?

    n?N est infinie, ce n'est pas dire que n vaut l'infini à partir d'un certain rang ou quelque chose de métaphysique. Dire qu'une suite (un) tend vers l'infini, cela veut dire que si on choisit un réel A (on peut ajouter « aussi grand que l'on veut »), alors un est plus grand que A à partir d'un certain rang.
  • Alors f admet une limite (à gauche) en b . Soit f:I?R f : I ? R une fonction et a?I a ? I . On dit que f est continue en a si f admet pour limite f(a) en a : ??>0, ??>0, ?x?I, x?a<??f(x)?f(a)<?.
Exo7

Développements limités

Corrections d"Arnaud Bodin.

1 Calculs

Exercice 1Donner le développement limité en 0 des fonctions : 1. cos xexpxà l"ordre 3

2.(ln(1+x))2à l"ordre 4

3. shxxx

3à l"ordre 6

4. e xp sin(x)à l"ordre 4 5. sin

6(x)à l"ordre 9

6. ln cos(x)à l"ordre 6 7.

1cosxà l"ordre 4

8. tan xà l"ordre 5 (ou 7 pour les plus courageux)

9.(1+x)11+xà l"ordre 3

10. arcsin ln(1+x2)à l"ordre 6 1. Dév eloppementlimité en 1 à l"ordre 3 de f(x) =px. 2. Dév eloppementlimité en 1 à l"ordre 3 de g(x) =epx 3.

Dév eloppementlimité à l"ordre 3 en

p3 deh(x) =ln(sinx).

Donner un développement limité à l"ordre 2 def(x) =p1+x21+x+p1+x2en 0. En déduire un développement à

l"ordre 2 en+¥. Calculer un développement à l"ordre 1 en¥.

2 Applications

Exercice 4Calculer les limites suivantes

lim x!0e x2cosxx

2limx!0ln(1+x)sinxx

limx!0cosxp1x2x 4

Étudier la position du graphe de l"applicationx7!ln(1+x+x2)par rapport à sa tangente en 0 et 1.

Déterminer:

1. (a) lim x!+¥px

2+3x+2+x

(b) lim x!¥px

2+3x+2+x

2. lim x!0+(arctanx)1x 2 3. lim x!0(1+3x)13

1sinx1cosx

Exercice 7Soitfl"application deRdansRdéfinie parf(x) =x31+x6:Calculerf(n)(0)pour toutn2N:

Soitaun nombre réel etf:]a;+¥[!Rune application de classeC2. On supposefetf00bornées ; on pose

M 0=sup x>ajf(x)jetM2=sup x>ajf00(x)j. 1. En appliquant une formule de T aylorreliant f(x)etf(x+h), montrer que, pour toutx>aet touth>0, on a :jf0(x)j6h2 M2+2h M0. 2.

En déduire que f0est bornée sur]a;+¥[.

3.

Établir le résultat sui vant: soit g:]0;+¥[!Rune application de classeC2à dérivée seconde bornée et

telle que limx!+¥g(x) =0. Alors limx!+¥g0(x) =0.

4 DL implicite

Exercice 9tan(x) =x1.Montrer que l"équation tan x=xpossède une unique solutionxndansnpp2 ;np+p2 (n2N). 2.

Quelle relation lie xnet arctan(xn)?

3. Donner un DL de xnen fonction denà l"ordre 0 pourn!¥. 4.

En reportant dans la relation trouvée en

2 , obtenir un DL dexnà l"ordre 2.

Exercice 10Recherche d"équivalentsDonner des équivalents simples pour les fonctions suivantes :

1.

2 exp1+4xp1+6x2, en 0

2.(cosx)sinx(cosx)tanx, en 0

3. arctan x+arctan3x 2p3 , enp3 4. px

2+123px

3+x+4px

4+x2, en+¥

5. ar gch

1cosx, en 0

cosx1+ax21+bx2 soit uno(xn)en 0 avecnmaximal.

Calculer

`=limx!+¥ ln(x+1)lnx x

Donner un équivalent de

ln(x+1)lnx x lorsquex!+¥.

Indication pourl"exer cice1 N1.cos xexpx=1+x13

x3+o(x3)

2.(ln(1+x))2=x2x3+1112

x4+o(x4) 3. shxxx 3=13! +15! x2+17! x4+19! x6+o(x6) 4. e xp sin(x)=1+x+12 x218 x4+o(x4) 5. sin

6(x) =x6x8+o(x9)

6. ln (cosx) =12 x2112 x4145 x6+o(x6) 7.

1cosx=1+12

x2+524 x4+o(x4) 8. tan x=x+x33 +2x515 +17x7315 +o(x7)

9.(1+x)11+x=exp11+xln(1+x)=1+xx2+x32

+o(x3) 10. arcsin ln(1+x2)=x2x42 +x62

+o(x6)Indication pourl"exer cice2 NPour la première question vous pouvez appliquer la formule de Taylor ou bien poserh=x1 et considérer un

dl au voisinage deh=0.Indication pourl"exer cice3 NEnx=0 c"est le quotient de deux dl. Enx= +¥, on poseh=1x

et on calcule un dl enh=0.Indication pourl"exer cice4 NIl s"agit bien sûr de calculer d"abord des dl afin d"obtenir la limite. On trouve :

1. lim x!0ex2cosxx 2=32 2. lim x!0ln(1+x)sinxx =0 3. lim x!0cosxp1x2x 4=16

Indication pour

l"exer cice

5 NFaire un dl enx=0 à l"ordre 2 cela donnef(0),f0(0)et la position par rapport à la tangente donc tout ce qu"il

faut pour répondre aux questions. Idem enx=1.Indication pourl"exer cice6 NIl s"agit de faire un dl afin de trouver la limite.

1. (a) lim x!+¥px

2+3x+2+x= +¥

(b) lim x!¥px

2+3x+2+x=32

2. lim x!0+(arctanx)1x 2=0 4 3.lim x!0(1+3x)13

1sinx1cosx=2Indication pourl"exer cice7 NCalculer d"abord le dl puis utiliser une formule de Taylor.

Indication pour

l"exer cice

8 N1.La formule à appliquer est celle de T aylor-Lagrangeà l"ordre 2.

2.

Étudier la fonction f(h) =h2

M2+2h

M0et trouver infh>0f(h).

3.

Il f autchoisir un a>0 tel queg(x)soit assez petit sur]a;+¥[; puis appliquer les questions précédentes

àgsur cet intervalle.Indication pourl"exer cice11 NIdentifier les dl de cosxet1+ax21+bx2enx=0.Indication pourl"exer cice12 NFaites un développement faisant intervenir desxet des lnx. Trouvez`=1.5

Correction del"exer cice1 N1.cos xexpx(à l"ordre 3).

Le dl de cosxà l"ordre 3 est

cosx=112! x2+e1(x)x3:

Le dl de expxà l"ordre 3 est

expx=1+x+12! x2+13! x3+e2(x)x3: Par convention toutes nos fonctionsei(x)vérifieronsei(x)!0 lorsquex!0.

On multiplie ces deux expressions

cosxexpx= 112
x2+e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =1

1+x+12!

x2+13! x3+e2(x)x3 on développe la ligne du dessus 12 x2

1+x+12!

x2+13! x3+e2(x)x3 +e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 On va développer chacun de ces produits, par exemple pour le deuxième produit : 12! x2

1+x+12!

x2+13! x3+e2(x)x3 =12 x212 x314 x4112 x512 x2e2(x)x3: Mais on cherche un dl à l"ordre 3 donc tout terme enx4,x5ou plus se met danse3(x)x3, y compris x

2e2(x)x3qui est un bien de la formee(x)x3. Donc

12 x2

1+x+12!

x2+13! x3+e2(x)x3 =12 x212 x3+e3(x)x3:

Pour le troisième produit on a

e

1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =e1(x)x3+xe1(x)x3+=e4(x)x3

On en arrive à :

cosxexpx= 112
x2+e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =1+x+12! x2+13! x3+e1(x)x3 12 x212 x3+e3(x)x3 +e4(x)x3il ne reste plus qu"à regrouper les termes : =1+x+(12 12 )x2+(16 12 )x3+e5(x)x3 =1+x13 x3+e5(x)x3

Ainsi le dl de cosxexpxen 0 à l"ordre 3 est :

cosxexpx=1+x13 x3+e5(x)x3: 6

2.(ln(1+x))2(à l"ordre 4).

Il s"agit juste de multiplier le dl de ln(1+x)par lui-même. En fait si l"on réfléchit un peu on s"aperçoit

qu"un dl à l"ordre 3 sera suffisant (car le terme constant est nul) : ln(1+x) =x12 x2+13 x3+e(x)x3 e

5(x)!0 lorsquex!0.

(ln(1+x))2=ln(1+x)ln(1+x) x12 x2+13 x3+e(x)x3 x12 x2+13 x3+e(x)x3 =x x12 x2+13 x3+e(x)x3 12 x2 x12 x2+13 x3+e(x)x3 13 x3 x12 x2+13 x3+e(x)x3 +e(x)x3 x12 x2+13 x3+e(x)x3 =x212 x3+13 x4+e(x)x4 12 x3+14 x4+e1(x)x4 13 x4+e2(x)x4 +e3(x)x4 =x2x3+1112 x4+e4(x)x4 3. shxxx

3(à l"ordre 6).

Pour le dl de

shxxx

3on commence par faire un dl du numérateur. Tout d"abord :

shx=x+13! x3+15! x5+17! x7+19! x9+e(x)x9 donc shxx=13! x3+15! x5+17! x7+19! x9+e(x)x9:

Il ne reste plus qu"à diviser parx3:

shxxx 3=13! x3+15! x5+17! x7+19! x9+e(x)x9x 3=13! +15! x2+17! x4+19! x6+e(x)x6

Remarquez que nous avons commencé par calculer un dl du numérateur à l"ordre 9, pour obtenir après

division un dl à l"ordre 6. 4. e xp sin(x)(à l"ordre 4).

On sait sinx=x13!

x3+o(x4)et exp(u) =1+u+12! u2+13! u3+14! u4+o(u4). 7

On note désormais toute fonctione(x)xn(oùe(x)!0 lorsquex!0) paro(xn). Cela évite les multiples

expressionsei(x)xn. On substitueu=sin(x), il faut donc calculeru;u2;u3etu4: u=sinx=x13! x3+o(x4) u

2=x13!

x3+o(x4)2=x213 x4+o(x4) u

3=x13!

x3+o(x4)3=x3+o(x4) u

3=x4+o(x4)eto(u4) =o(x4)

Pour obtenir :

exp(sin(x)) =1+x13! x3+o(x4) 12! x213 x4+o(x4) 13! x3+o(x4) 14! x4+o(x4) +o(x4) =1+x+12 x218 x4+o(x4): 5. sin

6(x)(à l"ordre 9).

On sait sin(x) =x13!

x3+o(x4).

Si l"on voulait calculer un dl de sin

2(x)à l"ordre 5 on écrirait :

sinquotesdbs_dbs43.pdfusesText_43
[PDF] limites exponentielle

[PDF] lim xlnx

[PDF] limite ln en moins l'infini

[PDF] epreuve lv2 bts

[PDF] grille evaluation oral anglais bts cgo

[PDF] bts langues etrangeres

[PDF] grille d'évaluation bts espagnol

[PDF] fonction homographique exercice

[PDF] contrat de travail géolocalisation

[PDF] clause géolocalisation dans contrat de travail

[PDF] géolocalisation salariés règles respecter

[PDF] lettre d information aux salariés géolocalisation

[PDF] geolocalisation vehicule entreprise pdf

[PDF] cnil geolocalisation

[PDF] geolocalisation vehicule particulier