[PDF] [PDF] Analyse et correction des Systèmes linéaires continus ou





Previous PDF Next PDF



Représentation et analyse des syst`emes linéaires 1 Compléments

Pour P = C on obtient la forme canonique compagne de commande suivante. Ac3 = P−1AP =...



2.4 Obtention dune forme canonique à partir dune représentation d

Pour obtenir les formes canoniques de commandabilité il faut vérifier d'abord si le système est commandable. C.à.d.



Cours dAutomatique ELEC4 Table des mati`eres

1.3 Forme canonique commandable . 4 Décomposition canonique dans l'espace d'état. 4.1 Sous-espace de commandabilité.



Représentation et analyse des syst`emes linéaires PC 3 Formes

Formes canoniques compagnes. Propriétés structurelles. Page 2. Les formes commandable et observable 2 commandable et non observable et −1 non commandable ...



analyse et commande des systèmes linéaires dans lespace détat

e canonique de commandabilité d'un système enir à partir de sa fonction de 1- Forme canonique commandable. Figure 1.10.a Le schéma fonct. Sous Matlab ...



SYSTEMES LINEAIRES

♤ Forme canonique commandable. ♤ Décomposition selon la commandabilité CR2 La matrice de commandabilité du système C(F G) est de rang plein



Untitled

1- Déterminez sa représentation interne sous forme canonique de commandabilité. 2- En déduire sa représentation interne sous forme canonique d'observabilité.



Cours Aut106

Exemple de non commandabilité d'une forme canonique observable : A = ∙. 0 1 • Une forme canonique commandable est commandable. • =⇒ ”Une forme à droite ...



Représentation détat des syst`emes linéaires

15 oct. 2002 5.2.1 Utilisation de la forme canonique commandable . . . . . 19. 5.2.2 Obtention de la forme canonique commandable . . . . . 19. 6 ...



Analyse et correction des Systèmes linéaires continus ou

Forme modale. La lecture de la stabilité est immédiate puisque les valeurs propres de la matrice sont sur la diagonale. Forme canonique de commandabilité. La 



Représentation et analyse des syst`emes linéaires PC 3 Formes

Formes canoniques compagnes. Propriétés structurelles Nota : si la paire (A B) est commandable ... La forme compagne de commande : algorithme.



Cours dAutomatique ELEC4 Table des mati`eres

1.3 Forme canonique commandable . 2.3 Dualité observabilité–commandabilité . ... 4 Décomposition canonique dans l'espace d'état.



CRONE CONTROL

Notion de commandabilité et d'observabilité Forme compagne (ou canonique) commandable ... Obtention de la forme canonique de commandabilité.



Représentation et analyse des syst`emes linéaires 1 Compléments

1 Compléments sur les formes canoniques compagnes La matrice de commandabilité associée `a la réalisation d'état (2) est une matrice inversible.



page de garde2

e canonique de commandabilité d'un système enir à partir de sa fonction de transfert. Schéma de simulation de la forme commandable stème d'ordre 3 donné par la 



Analyse et correction des Systèmes linéaires continus ou

Forme modale. La lecture de la stabilité est immédiate puisque les valeurs propres de la matrice sont sur la diagonale. Forme canonique de commandabilité. La 



Cours Aut106

5.2.3 Résumé sur la commandabilité : • Etude par le Critère de Kalman. • Une forme canonique commandable est commandable. • =? ”Une forme à droite est 



Untitled

22 janv. 2018 3- Déterminez sa représentation interne sous forme canonique diagonale. ... 1- Détermination de la forme canonique de commandabilité :.



Cours dAutomatique

28 juin 2017 Obtention de la forme canonique `a partir de la fonction de ... notions de commandabilité et d'observabilité d'une représentation d'état.



Représentation et analyse des systèmes dans lespace détat

8 avr. 2020 Forme canonique: Forme commandable. 4.1. Equations d'état et fonction de transfert. 4.7. Passage d'une représentation d'état a une autre.



[PDF] 1 Compléments sur les formes canoniques compagnes

en œuvre sur les mod`eles d'état des syst`emes dynamiques LTI 1 1 Formes compagnes de commandabilité On consid`ere une réalisation d'état LTI commandable 



[PDF] Représentation et analyse des syst`emes linéaires PC 3 Formes

Formes canoniques compagnes Propriétés structurelles Nota : si la paire (A B) est commandable La forme compagne de commande : algorithme



[PDF] Cours dAutomatique ELEC4 Table des mati`eres

1 3 Forme canonique commandable On ne s'intéresse qu'aux syst`emes monoentrée (la matrice B est alors un vecteur co- lonne)



[PDF] Commande des Systèmes - Patrick LANUSSE

Notion de commandabilité et d'observabilité 5 Différentes formes de représentation d'état Obtention de la forme canonique de commandabilité



[PDF] analyse et commande des systèmes linéaires dans lespace détat

1- Forme canonique commandable 2- Forme canonique observable 3- Forme canonique diagonale (modale) 4- Forme canonique de Jordan



[PDF] Analyse et correction des Systèmes linéaires continus ou

Forme modale La lecture de la stabilité est immédiate puisque les valeurs propres de la matrice sont sur la diagonale Forme canonique de commandabilité La 



[PDF] Cours dAutomatique

28 jui 2017 · Obtention de la forme canonique `a partir d'une autre réalisation notions de commandabilité et d'observabilité d'une représentation 



[PDF] Automatique et Systèmes >> Enseignant

1- Déterminez sa représentation interne sous forme canonique de commandabilité 2- En déduire sa représentation interne sous forme canonique d'observabilité 



[PDF] Polycopie de cours Syst`emes linéaires multivariables continus et

3 4 3 Obtention de la forme canonique de commandabilité : cas multivariable 37 4 Représentation d'état des syst`emes Multivariables `a temps discret



[PDF] Cours Systèmes linéaires multivariablespdf

Passage aux formes canoniques en utilisant les transformations similaires 35 III 6 1 Passage à la forme compagne commandable 35

:
[PDF] Analyse et correction des Systèmes linéaires continus ou

Analyse et correction des

Systèmes linéaires continus ou

échantillonnés à l"aide des

variables d"état

Gonzalo Cabodevila

gonzalo.cabodevila@femto-st.fr

2ème année

Semestre vert

Automatique avancée

filière EAOI

École Nationale Supérieure de

Mécanique et des Microtechniques

26, chemin de l'Épitaphe

25030 Besançon cedex - FRANCE

http://intranet-tice.ens2m.fr

Table des matieres

1 Exemple introductif : l rouge 7

1.1 Dierentes representations d'un systeme physique . . . . . . . . . . . . . . . . . . . . .

7

1.1.1 Equations dierentielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1.1.2 Fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

1.1.3 Reponse impulsionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

1.1.4 Representation d'etat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

1.2 Proprietes de la representation d'etat . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

1.2.1 Non unicite de la representation d'etat . . . . . . . . . . . . . . . . . . . . . . .

10

1.2.2 Matrice de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

1.3 Inter^et de cette representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

1.4 Resolution des equations d'etat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

1.4.1 Cas simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

1.4.2 Cas general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

1.4.3 Generalisation aux systemes variants dans le temps . . . . . . . . . . . . . . . .

14

1.4.4 Simulation sur calculateur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2 Obtention des equations d'etat 17

2.1 Methode directe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

2.2 A partir de la fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

2.2.1 Forme 1 : forme canonique de commandabilite . . . . . . . . . . . . . . . . . .

17

2.2.2 Forme 2 : forme canonique d'observabilite . . . . . . . . . . . . . . . . . . . . .

18

2.2.3 Representation modale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

2.2.4 Forme canonique de Jordan (forme diagonale) . . . . . . . . . . . . . . . . . . .

19

3 Commandabilite et observabilite des systemes 25

3.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

3.2 Que faire si un systeme n'est pas observable et/ou commandable . . . . . . . . . . . .

27

3.2.1 Retour sur conception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

3.2.2 Reduction de modeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

4 Transformation en l'une des formes canoniques 29

4.1 Diagonalisation de la matriceA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

4.2 Consequences pour la commandabilite et l'observabilite . . . . . . . . . . . . . . . . .

30

4.3 Cas des valeurs propres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

4.3.1 Diagonalisation classique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

4.3.2 Transformation modiee :Tm. . . . . . . . . . . . . . . . . . . . . . . . . . . .31

4.4 Transformation en la forme canonique d'asservissement . . . . . . . . . . . . . . . . .

32

4.5 Transformation en la forme canonique d'observabilite . . . . . . . . . . . . . . . . . . .

32
3

4TABLE DES MATIERES

5 Stabilite des systemes dynamiques lineaires 35

5.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

5.2 Etude de la stabilite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

5.3 Stabilite au sens de Lyapounov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

5.3.1 Theoreme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

5.3.2 Interpretation physique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

5.3.3 Applications aux systemes lineaires . . . . . . . . . . . . . . . . . . . . . . . . .

38

5.3.4 Fil rouge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

6 Commande des systemes 39

6.1 Placement de p^oles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

6.1.1 Calcul du regulateurL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

6.1.2 Calcul de la matrice de preltreS. . . . . . . . . . . . . . . . . . . . . . . . .40

6.2 Cas d'une representation quelconque du systeme a asservir . . . . . . . . . . . . . . . .

41

6.2.1 Transformation en la forme canonique de commandabilite . . . . . . . . . . . .

41

6.2.2 Theoreme de Cayley-Hamilton . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

6.3 Commande Modale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

6.3.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

6.3.2 Methode de synthese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

6.4 Choix des p^oles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

6.4.1 P^oles complexes conjugues dominants . . . . . . . . . . . . . . . . . . . . . . .

45

6.4.2 Maximalement plat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

6.4.3 P^oles a partie reelle identique . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

6.4.4 Polyn^omes de Naslin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

6.5 Commande optimale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

6.5.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

6.5.2 Stabilite de la commande optimale . . . . . . . . . . . . . . . . . . . . . . . . .

48

6.5.3 Choix des matriceRetQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

6.5.4 Exemple : l rouge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

7 Synthese d'observateurs d'etat 51

7.1 Introduction au probleme de la reconstruction d'etat . . . . . . . . . . . . . . . . . . .

51

7.1.1 Par calcul direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

7.1.2 Par simulation du processus . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

7.1.3 Par simulation du processus et asservissement sur les parties connues du vecteur

d'etat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Observateurs de Luenberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

7.3 Observateurs d'ordre reduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

7.3.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

7.4 Observateur generalise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

7.5 Equation d'etat d'un systeme asservi avec observateur . . . . . . . . . . . . . . . . . .

57

7.5.1 Theoreme de separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

7.6 Filtrage de Kalman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

8 Representation d'etat des systemes lineaires echantillonnes 59

8.1 Systeme discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

8.2 Resolution des equations dans le domaine du temps . . . . . . . . . . . . . . . . . . . .

60

8.3 Application de la transformee enz. . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

8.4 Matrice de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

8.5 Obtention d'un modele d'etat a partir de la fonction de transfert enz. . . . . . . . .61

8.6 Resolution de l'equation d'etat dans le domaine dez. . . . . . . . . . . . . . . . . . .61

8.7 Commandabilite et observabilite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

TABLE DES MATI

ERES5

8.7.1 Commandabilite d'un systeme echantillonne . . . . . . . . . . . . . . . . . . . .

61

8.7.2 Observabilite d'un systeme echantillonne . . . . . . . . . . . . . . . . . . . . . .

62

8.8 Stabilite des systemes echantillonnes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

8.9 Commandes des systemes echantillonnes . . . . . . . . . . . . . . . . . . . . . . . . . .

63

8.9.1 Calcul de la matrice de preltre . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

8.9.2 Commande optimale dans le cas discret . . . . . . . . . . . . . . . . . . . . . .

64

9 Annales d'examens 65

Devoir personnel Juin 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Examen nal Juin 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Examen nal Juin 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 Travaux diriges75

I Annexes89

A Quelques publications originales 91

6TABLE DES MATIERES

Chapitre 1

Exemple introductif : l rouge

1.1 Dierentes representations d'un systeme physique

Soit un moteur a courant continu commande par l'inducteur.I= cteJ;fi u Figure1.1 { Moteur a courant continu commande par l'inducteur commande : u sortie : ! Le systeme est monovariable, lineaire invariant dans le temps, il peut donc ^etre represente par une equation dierentielle a coecients constants.

1.1.1 Equations dierentielles

Le systeme represente en gure 1.1 est decrit par les equations suivantes : u=Ri+Ldidt (1.1) J d!dt +f!= (1.2) =ki(1.3) J d2!dt

2+fd!dt

=kdidt =kL (uRi) =kL uRk d!dt +f! (1.4) J d2!dt 2+ f+RJL d!dt +RfL !=kL u(1.5) d 2!dt 2+fJ +RL d!dt +RfLJ !=kLJ u(1.6) d 2!dt

2+a1d!dt

+a0!=b0u(1.7) Des lors!(t) est connu si u(t) et les deux conditions initiales (!(0) etd!(0)dt ) sont connues. 7

8CHAPITRE 1. EXEMPLE INTRODUCTIF : FIL ROUGE

1.1.2 Fonction de transfert

En utilisant la transformation de Laplace :

L[e(t)] =Z

1 0 epte(t)dt;(1.8) L de(t)dt =pE(p)e(0);(1.9) nous obtenons la transformee de (1.7) : p 2 (p)p (0)_ (0) +a1(p (p) (0) +a0 (p) =b0U(p) (1.10) d'ou : (p) =b0p

2+a1p+a0U(p) +

(0)(a1+p) +_ (0)p

2+a1p+a0(1.11)

Si les conditions initiales sont nulles :

(p) =b0p

2+a1p+a0U(p) (1.12)

(p)U(p)=b0p

2+a1p+a0=H(p) (1.13)

H(p) est la fonction de transfert du systeme.

1.1.3 Reponse impulsionnelle

Si les conditions initiales sont nulles :

(p) =H(p)U(p) (1.14) En repassant en temporel, la multiplication est transformee en une convolution !(t) =h(t)? u(t) =Z 1 0 h()u(t)d(1.15) donc h(t) =kRJLf efJ teRL t (1.16)

1.1.4 Representation d'etat

Si l'on desire realiser une simulation analogique du systeme a partir d'integrateurs, l'equation (1.7)

peut se mettre sous la forme : d 2!dt

2=b0ua1d!dt

a0!(1.17) d'ou le schema suivant, Les variables d'etat sont les sorties des integrateurs. x

1=!; x2=d!dt

= _!(1.18) Le systeme peut ^etre represente par les deux equations suivantes,

1.1. DIFF

ERENTES REPRESENTATIONS D'UN SYSTEME PHYSIQUE9b

0RR a 1a 0u d2!dt d!dt _!(0)!(0)

Figure1.2 { Schema d'un simulateur analogique

_x1=x2(1.19) _x2=b0ua0x1a1x2(1.20)

La representation utilisee classiquement est la representation matricielle, on denit alors un vecteur

d'etat, x=x1 x 2 (1.21)

Equation d'etat :

_x1 _x2 =0 1 a0a1 x1 x 2 +0 b 0 u(1.22)

Equation de sortie :

!=1 0x1 x 2 (1.23)

equation d'etat + equation de sortie = representation d'etatDans le cas general, l'ecriture de la representation d'etat est la suivante,

_x=Ax+Bu(1.24) y=Cx+Du(1.25) Dans les cas qui nous interessent c'est-a-dire les systemes a une seule entree et une seule sortie, l'ecriture generale de la representation d'etat est la suivante, _x=Ax+Bu(1.26) y=Cx+Du(1.27) Dimensions : si le vecteur d'etat est de dimensionn, alors |Aest de dimensionnlignesncolonnes, |Best de dimensionnlignes1 colonne, |Cest de dimension 1 lignencolonnes, |Dest une constante (tres souvent nulle).

10CHAPITRE 1. EXEMPLE INTRODUCTIF : FIL ROUGE

1.2 Proprietes de la representation d'etat

1.2.1 Non unicite de la representation d'etat

La representation d'etat n'est pas unique, dans l'exemple traite jusqu'a present nous avons choisi le

vecteur d'etat suivant x=! _! (1.28) nous aurions pu choisir un autre vecteur d'etat, par exemple x=i (1.29) En eet, en reprenant les equations fondamentales du systeme u=Ri+Ldidt (1.30) J d!dt +f!=ki(1.31) avec ce nouveau vecteur d'etat elle peuvent ^etre ecrites sous la forme

U=Rx1+L_x1(1.32)

J_x2+fx2=kx1(1.33)

d'ou la representation d'etat

Equation d'etat :_x1

_x2 =RL 0 kJ fJ x1 x 2 1L 0 u(1.34)

Equation de sortie :

!=0 1x1quotesdbs_dbs28.pdfusesText_34
[PDF] représentation d'état exercices corrigés pdf

[PDF] passage fonction de transfert représentation d'état

[PDF] forme modale automatique

[PDF] forme compagne de commande

[PDF] matrice de transfert automatique

[PDF] diagonale d'un carré propriété

[PDF] prix ecran projecta

[PDF] format 10x15 correspondance

[PDF] meilleur ecran videoprojecteur

[PDF] comparatif ecran de projection

[PDF] ecran projection

[PDF] fabriquer son ecran de projection

[PDF] dimensionnement arbre torsion

[PDF] rayon et diamètre d'un cercle

[PDF] corde cercle