[PDF] [PDF] Chapitre 7 - Fonctions Quadratiques - BDRP





Previous PDF Next PDF



Formules importantes pour la fonction quadratique

b) où à l'aide de la formule quadratique cela donnera x = ==>. ==>. ==>. Donc



1 Forme canonique 2 Calcul des coordonnées du sommet et

Ordonnée du sommet : yS = f(xS) = ax2. S + bxS + c. Tableau de variation : La courbe représentative de f est une parabole de sommet S admettant la droite.



Chapitre 7 - Fonctions Quadratiques

Soit y = ax2 + bx + c l'équation d'une parabole. Coordonnées du sommet S = (- b. 2a;-. ?. 4a) avec ? = b2 - 4ac. Equation de l'axe de symétrie x = -.



Axe de symétrie dune parabole (1)

Exercices. Donner les coordonnées du sommet de la parabole d'équation : 1. (. ) = -. +. 2.



Chapitre 3 : La fonction du second degré f(x) = ax² + bx + c

Caractéristiques d'une parabole d'axe vertical : sommet ; axe de symétrie Construire un graphique à partir d'un tableau de nombres ou d'une formule.



SECOND DEGRÉ (Partie 1)

M est le sommet de la parabole. Il correspond au maximum (ou au minimum) de la fonction f. La parabole possède un axe de symétrie. Il s'agit 



SECOND DEGRÉ (Partie 1)

les deux dernières formules donnant et … à condition de les connaître ! Déterminer l'axe de symétrie et le sommet de la parabole d'équation.



1 Équations cartésiennes des coniques

(formule de la distance entre deux points) Le sommet de la parabole est le point S se trouvant sur l'axe focal à égale distance entre F et d.



Comment trouver la règle dune fonction quadratique

1- Si vous avez le sommet et un point vous allez trouver la règle avec la forme canonique. Exemple: Coordonnées. Sommet (2



Thème 16: La croissance dune fonction - Introduction

Exercice 16.17: Soit la fonction f(x) = x2 + 2x ? 8. a) Déterminer les coordonnées du sommet S de la parabole à l'aide de la formule ci-dessus.



[PDF] Forme canonique dune fonction polynôme du second degré

Soit la fonction polynôme du second degré défini par ( ) = 2 2 ? 12 + 1 Déterminer le sommet de la parabole de et son axe de symétrie Correction - 



[PDF] SECOND DEGRÉ (Partie 1) - maths et tiques

M est le sommet de la parabole Il correspond au maximum (ou au minimum) de la fonction f La parabole possède un axe de symétrie Il s'agit 



[PDF] 1 Forme canonique 2 Calcul des coordonnées du sommet et

Ordonnée du sommet : yS = f(xS) = ax2 S + bxS + c Tableau de variation : La courbe représentative de f est une parabole de sommet S admettant la droite



[PDF] Chapitre 7 - Fonctions Quadratiques - BDRP

Soit y = ax2 + bx + c l'équation d'une parabole Coordonnées du sommet S = (- b 2a;- ? 4a) avec ? = b2 - 4ac Equation de l'axe de symétrie x = -



[PDF] Chapitre 3 : La fonction du second degré f(x) = ax² + bx + c

Le graphique de la fonction f(x) = ax² + bx + c (avec a ? 0) est une parabole Cette parabole : ? Possède un axe de symétrie : droite parallèle à y d' 



[PDF] Axe de symétrie dune parabole (1)

Exercices Donner les coordonnées du sommet de la parabole d'équation : 1 ( ) = - + 2



[PDF] parabole_fiche_ex_3_solutionspdf

Soit S(xs;ys) le sommet de la parabole d'équation y=x2-6x+m Si son sommet est sur l'axe des abscisses on a ys=0 S(xs;0)



[PDF] parabolepdf - Descartes et les Mathématiques

2 mai 2008 · Construire point par point une parabole dont on connaît le sommet l'axe de symétrie et un point À partir d'un point M de la courbe ayant pour 



Sommet dune parabole et forme canonique de son équation (vidéo)

27 mar 2021 · Sommet d'une parabole et forme canonique de son équation pour déterminer les coordonnées Postée : 27 mar 2021



[PDF] CHAPITRE 4 MAUD ELISÉE AU PAYS DES PARABOLES - APMEP

L'expression a (x – xS)2 + yS est appelé la forme canonique d'un trinôme Les nombres xS et yS sont les coordonnées du sommet S de la parabole et a est la 

  • Comment trouver le sommet de la parabole ?

    Le sommet de la parabole est le point de la parabole d'abscisse . Les branches de la paraboles sont tournées vers le haut lorsque (le sommet est alors un minimum) et vers le bas lorsque (le sommet est alors un maximum).
  • C'est quoi le sommet d'une parabole ?

    Pour trouver le ou les zéros d'une fonction polynomiale de degré 2 sous la forme générale f(x)=ax2+bx+c, il faut remplacer f(x) par 0, puis trouver la ou les valeurs de x qui rendent l'équation vraie.
  • Comment trouver le sommet d'une parabole avec les zéros ?

    La courbe représentative d'une fonction polynomiale du second degré d'équation y = ax² + bx + c (a, b et c sont des constantes réelles et a ?0), est une parabole.
[PDF] Chapitre 7 - Fonctions Quadratiques - BDRP

GYMNASE DE BURIER

Chapitre 7 - Fonctions Quadratiques

Sarah D´egallier Rochat1. Fonctions quadratiques et paraboles Une fonction quadratique est une fonction de la forme f(x) =ax2+bx+caveca?= 0.La courbe repr´esentative d"une fonction quadratique est uneparabole.O1 1xy

Sia> 0la parabole

estconvexeO1 1xy

Sia< 0la parabole

estconcaveGYMNASE DE BURIER1MSt1 Exercice 1.1Les paraboles suivantes sont-elle convexes ou concaves?O1 1xy

ConcaveO1

1xy

Convexe

Exercice 1.2Les fonctions suivantes sont-elles quadratiques? Si oui, la parabole correspondante est-elle convexe ou concave? a)-2x2+ 5x-21Oui / Concave (a=-2<0)b)4-x2Oui / Concave (a=-1<0)c)

15x2+ 2x+ 1Non

d)3x+ 1Non e)3x+x2Oui / Convexe (a= 1<0)f)⎷x2+ 3x-2Non2. Points caract´eristiques Soit la parabole d"´equationy=x2+ 4x-5. Ses points caract´eristiques sont les suivants.O1 1xy

Axe de sym´etriex=-2SommetS(-2,-9)-9-2

Ordonn´ee `a l"origineH(0,-5)Z´eroZ1(1,0)Z´eroZ2(-5,0)Une fonction quadratique a toujours un sommet et une ordonn´ee `a

l"origine; elle peut avoir 0, 1 ou 2 z´eros.GYMNASE DE BURIER1MSt2 Soity=ax2+bx+cl"´equation d"une parabole.Coordonn´ees du sommetS=? -b2a;-Δ4a?avecΔ= b2-4ac.Equation de l"axe de sym´etriex=-b2a(droite verticale passant par le sommet)Exemple 2.1Soit la parabole d"´equationy=-12 x2-x+ 4. Calculer les coordonn´ees du sommet et l"´equation de l"axe de sym´etrie.On aa=-

12,b=-1etc=4.

On calcule :Δ= (-1)2-4·?-12

?·4=1+8=9On remplace :S=? -12·(-12

94·(-12

?-1,92

?L"´equation de l"axe de sym´etrie est doncx=-1.Exemple 2.2Soitf(x) =ax2+bx+cune fonction quadratique.

Calculerf(0).f(0) =a·02+b·0+c=cLe pointH(0;c)fait donc partie du graphe de la fonction (i.e, de

la parabole).On appelle ce point l"ordonn´ee `a l"origine car il

correspond `a la valeur de l"ordonn´ee (y) lorsquex= 0.Ordonn´ee `a l"origineH= (0;c)Exemple 2.1 (suite)Calculer l"ordonn´ee `a l"origine de la parabole

d"´equationy=-12 x2-x+ 4. Placer ce point ainsi que le sommet et l"axe de sym´etrie sur le graphique.On aH= (0;c)= (0;4).GYMNASE DE BURIER1MSt3 O1

1xySommetS?-1;92

?Axe de sym´etriex=-1Ordonn´ee `a l"origineH(0;4)Soitf(x) =ax2+bx+c. Les z´eros de la fonctionf(x)

correspondent aux solutions de l"´equationax2+bx+c= 0.Z´eros (1) SiΔ>0, il y a deux intersections : Z

1?-b+⎷Δ

2a;0? etZ2?-b-⎷Δ 2a;0? Z

1(x1;0)Z

2(x2;0)xy

(2) SiΔ = 0, il y a une seule intersection : Z

1?-b2a;0?xy

Z

1(x1;0)(3) SiΔ<0, il n"y a pas intersections.

xyGYMNASE DE BURIER1MSt4 Exemple 2.1 (suite)Calculer les z´eros de la fonction f(x) =-12 x2-x+ 4. Compl´eter le graphique pr´ec´edent.On r´esoud l"´equation-12 x2-x+ 4 = 0.- 12 x2-x+ 4 = 0MEE 12 (x2+2x-8)= 0SP 12 (x+4)(x-2)= 0?S={-4;2}Il y a deux solutions, il y aura donc deux z´eros : Z

1(-4;0)etZ2(2;0)Remarque 2.1La premi`ere coordonn´ee du sommetxSd"une

parabole est toujours ´egale `a la moyenne des premi`eres coordonn´ees des z´erosxZ1etxZ2x

S=xZ1+xZ22

S"il n"y a qu"un z´ero, on axS=xZ.Exemple 2.2Dans l"exemple pr´ec´edent, on avait S -1;92 ,Z1(-4;0)etZ2(2;0) V´erifier la formule de la remarque pr´ec´edente.On axS=-1,xZ1=-4etxZ2=2.Donc x S?=xZ1+xZ22? -1?=-4+22? -1?=-1?GYMNASE DE BURIER1MSt5

3. Calcul avec les coordonn´ees

Rappel 3.1Un point(x;y)fait partie d"une courbe si ses

coordonn´ees satisfont l"´equation de cette courbe.Exemple 3.1Le point(-2;4)fait-il partie de la parabole

y=-2x2-5x+ 1?4

?=-2·(-2)2-5·(-2)+1?4?=-8+10+1?4?=3?NonRappel 3.2On appellez ´eroles valeurs telle sque f(x) = 0.Exemple 3.2Quels sont les z´eros de la fonction

f(x) = 2x2-12x+ 18?On r´esoud l"´equationf(x) = 0:

2x2-12x+ 18 = 0MEE

?2(x2-6x+9)= 0PR ?2(x-3)2= 0?S={3}La fonction n"a qu"un z´ero :x= 3.Intersection entre une droite et une parabole Exemple 3.3Calculer les coordonn´ees des points d"intersection entre la parabole d"´equationyf=x2-2x-1et la droite d"´equationyg=x-1.O1 1xy I

1(0;-1)I

2(3;2)On cherche les valeurs de x pour

lesquellesyf=yg:x

2-2x-1=x-1-x+ 1?x2-3x= 0CL

?x(x-3)= 0?S={0,3}On remplace dansygpour trouver la deuxi`eme coordonn´ee;x= 0?y=x-1=0 -1 =-1?I1(0;-1)x= 3?y=x-1=3 -1 =2 ?I2(3;2)GYMNASE DE BURIER1MSt6

Lorsque que l"on cherche les points d"intersection entre une droite et une parabole, trois cas sont possibles :O1 1xy

Deux intersectionsO1

1xy

Une intersection

La droite et la para-

bole sont tangentesO1 1xy Aucune intersectionIntersection entre deux paraboles distinctes O1 1xy I

1(-2;1)Exemple 3.4Calculer les coordonn´ees

des points d"intersection des para- boles d"´equationyf=x2+ 6x+ 9et y g=-x2-2x+ 1.On cherche les valeurs de x pour lesquellesyf=yg:x

2+ 6x+ 9=-x2-2x+ 1+x2+ 2x-1?2x2+ 8x+ 8= 0CL

?2(x2+ 4x+ 4)= 0CL

?2(x+ 2)2= 0?S={-2}On remplace dansyfpour trouver la deuxi`eme coordonn´ee;x=-2?y=x2+ 6x+ 9= (-2)2+ 6·(-2) + 9= 4-12 + 9 =1 ?I1(-2;1)GYMNASE DE BURIER1MSt7

Lorsque l"on calcule l"intersection entre deux paraboles distinctes, trois cas sont possibles :O1 1xy

Deux intersectionsO1

1xy

Une intersection

Les paraboles sont

tangentesO1 1xy

Aucune intersection4. Application pratique

Exemple 4.1Une balle est tir´ee en l"air `a partir du sol. La hauteur h(en m`etres) de la balle en fonction du tempst(en secondes) est donn´ee parh(t) =-4t2+28 t.O10

1t [s]h [m]

S(3.5; 49)a) Calculer la hauteur maximale at-

teinte par la balle.La hauteur maximale de la balle cor- respond au sommet de la pa rabole.On calcule donc les coordonn´ees du sommetS?-b2a;-Δ4a?.La balle atteindra le sommet au temps t=-b2a=-282·(-4)=-28-8=3 .5s. Pour trouver la hauteur, on peut remplacert= 3.5dans l"´equation h(t):h(3.5) =-4·(3.5)2+28 ·3.5=49 La hauteur maximale de la balle (atteinte apr`es 3.5 secondes) sera donc de49m`etres.GYMNASE DE BURIER1MSt8 b) Calculer le temps que met la balle pour retomber au sol. Nous devons calculer pour quelles valeurs detl"on a h(t) =-4t2+28 t= 0.On calculeΔ:Δ =b2-4ac=28

2-4·(-4)·0= 784>0On a donc deux solutions :

x

1=-b+⎷Δ

2a= -28+ 28 2·(-4)=0 x

2=-b-⎷Δ

2a= -28-282·(-4)= -56-8=7 La balle met donc7secondespour retomber sur le sol.5. Optimisation Exemple 5.1Robert veut faire un parc rectangulaire pour son chien. Il a 10 m`etres de barri`ere. De quelle taille doivent ˆetre la longueurLet lala rgeurxdu parc pour maximiser son aireA? Exprimer l"aire en fonction dexet tracer le graphe de la fonction.L=2-xL=2-x xxSoitx la la rgeurdu pa rcet L sa lon- gueur .Le p´erim`etre du parc vaut P= 2x+ 2L= 10.On cherche `a maximiser l"aireA=x·L.On exprimeLen fonction dex:

2x+ 2L= 10?2L= 10-2x?L= 5-xL"aire du parc sera donc de

A=x·L=x(5-x)= 5x-x2=-x2+ 5xGYMNASE DE BURIER1MSt9 O1 1xA Z

1(0,0)Z

2(5,0)S(2.5,6.25)Tra¸cons le graphe de la fonc-

tion. Pour cela, calculons les co- ordonn´ees des z´eros et du som- met.-x2+ 5x= 0MEE ? -x(x-5)= 0

On a S={0;5}et doncZ1(0,0)

etZ2(5,0).On calcule ensuite les coordonn´ees du sommet S( -b2a,-Δ4a) : b2a=-5-2= 2.5-

Δ4a=-52-4·(-1)·04·(-1)=

154
=6.25L"aire est maximale quand la largeur vautx= 2.5met la longueury= 5-x= 5-2.5 = 2.5m.Le parc doit donc ˆetre carr´e pour que l"aire soit maximale!GYMNASE DE BURIER1MSt10quotesdbs_dbs28.pdfusesText_34
[PDF] axe de symétrie d'une parabole

[PDF] surplus du producteur exercice corrigé

[PDF] surplus du producteur

[PDF] surplus social

[PDF] surplus collectif

[PDF] surplus total

[PDF] surplus collectif monopole

[PDF] taux d'utilisation des capacités de production calcul

[PDF] taux d'utilisation des capacités de production 2016

[PDF] taux d'utilisation calcul

[PDF] productivité totale des facteurs calcul

[PDF] taux d'utilisation machine

[PDF] productivité totale calcul

[PDF] taux d'utilisation definition

[PDF] productivité totale microéconomie