[PDF] Corrigé de lexamen du 26 avril 2012 (durée 2h)





Previous PDF Next PDF



Exercices corrigés Chaˆ?nes de Markov discr`etes

Déterminer le graphe et la matrice de transition de la cha?ne ainsi obtenue. Quelle est la période de ses états? L'ensemble des états est E = {1 2



Corrigé de lexamen du 26 avril 2012 (durée 2h)

26 avr. 2012 Les trois parties sont indépendantes. Exercice 1 : On considère une chaîne de Markov (Xn)n?0 sur {1...



Processus aléatoires et applications

2 mars 2019 A Solution de quelques exercices. 109. A.1 Exercices du Chapitre 1 . ... cha?ne de Markov de matrice de transition P et de distribution ...



Exercices sur les chaînes de Markov

Exercice 4. Soit (Xn)n?0 une chaîne de Markov homogène à valeurs dans l'ensemble E = {1 2



GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir

Écrire la matrice de transition M de ce graphe en prenant les sommets A et B dans cet ordre. 3. Préciser l'état initial P0 puis montrer que P1 = (052 0



CORRIGÉ

CORRIGÉ. Date : 30 septembre-4 octobre 2013. PRÉNOM : Groupe : Exercice 1. ... Donner la matrice de transition P de la cha?ne de Markov d'ensemble ...



Mary - TD 11 – Chaînes de Markov (récurrence/transience) (corrigé)

Exercice 1. Récurrence et Transience. Sur l'ensemble S = {0 1



Exercices corrigés

Déterminer la densité de probabilité conjointe du couple (UV ). 2. En déduire les lois marginales de U et V . 3. Calculer les matrices de covariance de [X Y ]t 



CHAÎNES DE MARKOV

5.3.2 Probabilités et matrices de transition . . . . . . . . . . . . . . . . . . . . . 79 6.3 Exercices : dynamique d'une chaîne de Markov .



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice. AB est inversible d'inverse la matrice C. Montrer alors que B est 



Feuille d’exercices n 2 : Chaînes de Markov : exemples et

de matrice de transition Q et de mesure initiale à préciser Correction Cet exercice montre que la chaîne de Markov renversée en temps (à horizon ?ni donc) est encore une chaîne de Markov si on la considère sous sa mesure stationnaire un résultat non intuitif dans la cas non réversible; il précise aussi la matrice de transition de la



1 Puissances d'une matrice - hmalherbefr

1 Donner la matrice de transition P de la chaˆ?ne de Markov d’ensemble d’´etats S = {IMR} mod´elisant la population a laquelle appartient cet individu I M R ? P = 08 0 02 075 025 0 0 04 06 I M R Pour remplir la matrice P on utilise le fait que la somme des ´el´ements d’une ligne vaut 1 2



Exercice 1 - univ-angersfr

n) est une cha^ ne de Markov et calculer sa matrice de transition Q 2 Calculer Qn n 1 puis lim n!+1Qn 3 Calculer lim n!+1P (X n= j) j= 1;2;3: 4 Montrer que si = (1 3; 1 3; 1 3) alors (X n) est une suite stationnaire Exercice 7 Soit (X n) une cha^ ne de Markov dont l’espace d’ etats est E= f1;2;3;4get de matrice de transition : Q= 0



Chapitre 8 Chaˆ?nes de Markov - ENS

Une matrice de transition P est parfois repr·esent·ee par son graphe de transition G un graphe dont les nœuds sont les ·etats de E et qui a une arˆete orient·ee de i vers j si et seulement si pij > 0 auquel cas cette arˆete est orn·ee de l’·etiquette pij



Feuille d'exercices &# 3 : Chaînes de Markov - univ-rennes1fr

matrices de transition : (a) Ym = Xnm où (nm)m 0 ˆ N est une sous-suite croissante non-bornée; (b) Zn = Xk+n où k 1 entier; (c) Wn = Xkn où k 2 entier 3 Même question pour la suite Vn = (Xn;Xn+1) Exercice 2 Propriété de Markov forte Soit (Xn)n 0 une chaîne de Markov ( ;P) à aleursv dans E et soit T un temps d'arrêt pour la



Searches related to matrice de transition exercices corrigés PDF

Exercice 2 Soit ????=(1 0 2 1) 1 Exprimer ???? á en fonction de Pour tout ?? 2 Si ???? est inversible calculer ?????1 et ???? á pour tout ?? Allez à : Correction exercice2 Exercice 3 Soit ????=(1 2 3 0 0 1 ?1 0 ?2) 1 3Calculer ????2 et ???? Calculer ????3+????2+???? 2 Exprimer ?????1 en fonction de ????2 ???? et

Quelle est la matrice de transition?

Remarques : Si a = 0 et b = 0, la matrice de transition est la matrice unité. La suite des états est constante, donc elle converge, mais la limite dépend de la distribution initiale : il n'y a pas d'état stable.

Comment effectuer la transposition d’une matrice ?

La transposition d’une matrice est une opération dans laquelle on convertit les lignes de la matrice en colonne et la colonne de la matrice en lignes. L’équation générale pour effectuer la transposition d’une matrice est la suivante. Matrix M ---> [1, 8, 9 12, 6, 2 19, 42, 3] Transpose of M Output ---> [1, 12, 19 8, 6, 42, 9, 2, 3]

Quels sont les exercices corrigés sur les matrices ?

Exercices java Exercices langage c Exercices python récursivité Tableaux Complexité analyse des algorithmes C'est la deuxième série d'exercices corrigés sur les matrices, nous continuons à effectuer des opérations intéressantes de calcul matriciel.

Comment calculer la courbe de transition ?

Mathématiquement, la courbe de transition se calcule comme pour une entrée progressive en courbe et correspond à une « clotoïde ». Dans la pratique, j’utilise simplement la souplesse du tracé en contreplaqué qui prend de lui-même la forme adéquate. Il faut toutefois savoir qu’adoucir les transitions rallonge la pente.

Université Paul Sabatier (Toulouse 3) Magistère Économiste Statisticien

M1 - Processus Année 2011-2012

Corrigé de l"examen du 26 avril 2012(durée 2h) Tous documents interdits. Soyez concis, mais justifiez scrupuleusement ce que vous faites.

Les trois parties sont indépendantes.

Exercice 1 :On considère une chaîne de Markov(Xn)n0surf1;:::;7gde matrice de transitionQ donnée par Q=0 B

BBBBBBB@1=2 1=4 0 1=4 0 0 0

1=2 0 0 0 0 0 1=2

0 0 1=8 0 7=8 0 0

1=4 0 0 0 0 0 3=4

0 1=9 7=9 0 0 1=9 0

0 0 0 0 0 1 0

0 0 0 1 0 0 01

C

CCCCCCCA

a)

Dessiner le graphe de la c haînede Mark ovasso ciéeen précisan tle sprobabilit ésde transitions

entre les différents états. b) Détermi nerles classes d"états récurren tset transitoires. c)

La c haîneest-elle irréductible ?

d)

Calcu lerP3(X2= 6)etP1(X2= 7).

Solution de l"exercice1.

a) Graphe :1253

4761/4

1/21/97/9

1=41=21=43=41/9

17/81/21/8

1

b) On déduit du graphe qu"il y a deux classes récurrentes :f1;2;4;7getf6g, et une classe transiente :

f3;5g. c) Non, sinon elle n"admettrait qu"une seule classe. d) Par la formulePx(X2=y) =Q2(x;y) =P zQ(x;z)Q(z;y), on obtient P

3(X2= 6) =Q(3;5)Q(5;6) =78

19 =772 ;et P

1(X2= 7) =Q(1;2)Q(2;7) +Q(1;4)Q(4;7) =14

12 +14 34
=516 1 Exercice 2 :On définit une suite de variables aléatoires(Sn)n0par S

0=x >0p.s.;et pourn1,Sn=Sn1+"nSn1;

où("n)n1est une suite de v.a. indépendantes et identiquement distribuées de loi12 1+12

1, et où

est un réel tel quejj<1. Soit(Fn)n0la filtration naturelle de(Sn)n0,i.e.Fn=(S0;:::;Sn), pour toutn0. a)

Mon trerque (Sn)n0est une(Fn)n0-martingale.

b) Mon trer(par récurrenc e)que p ourtout n0,Sn>0. c) En déduire qu e(Sn)n0converge p.s., quandntend vers+1. d) On p ose,p ourtout n0,Zn= logSn:Montrer queZn=Zn1+ log(1 +"n). e)

En déduire qu e

Z n= logx+nX k=1log(1 +"k): f)

Calc ulerE(log(1 +"1)), et montrer que

Z nn p.s.!n!112 log(12): g)

En déduire a lorsque Snconverge p.s. quandntend vers l"infini, vers une limite à déterminer.

Solution de l"exercice2.

a)(Sn)est clairement adapté par définition de(Fn). Montrons queSnintégrable pour toutn0. S

0est intégrable car constante. Supposons par récurrence queSn1est intégrable. Alors comme

jj<1etj"nj 1p.s., on ajSnj 2jSn1j, et doncSnest intégrable. Pour toutn0, on a

E(Sn+1jFn) =E(Sn+"n+1SnjFn)

=Sn+SnE("n+1jFn)carSnestFn-mesurable =Sn+SnE("n+1); car"n+1est indépendante deFnpar construction. Comme"n+1est centrée,i.e.E("n+1) = 0, on obtientE(Sn+1jFn) =Sn, et donc(Sn)nest une martingale. b) On a S1=S0(1+"1) =x(1+"1). Or1< <1et"1=1p.s., donc1+"1>0, et comme x >0,S1est positive. Par récurrence, on suppose alorsSn>0. Et commeSn+1=Sn(1+"n+1), par la même preuve que pourS1,Snest positive. c) Comme (Sn)nest une martingale positive, elle converge p.s., car elle est bornée dansL1,i.e. sup nEjSnj<1. d)Zn= logSn= log(Sn1(1 +"n)) = logSn1+ log(1 +"n) =Zn1+ log(1 +"n). e)

P arrécu rrenceimmédiate ,on obtien tdonc

Z n= logx+nX k=1log(1 +"k): f) Comme 1 +"1>0p.s.,log(1 +"1)est bien définie p.s. et intégrable. On a alors

E(log(1 +"1)) =12

log(1 +) +12 log(1) =12 log(12): Par la loi des grands nombres, appliquée aux v.a. i.i.d. intégrableslog(1 +"i), on a 1n n X k=0log(1 +"k)!E(log(1 +"1));p.s. et comme logxn !0, on obtient bien le résultat demandé. 2 g)Comme jj<1, on a0< 2<1et0<12<1, doncZnconverge p.s. vers1etSn converge p.s. vers 0. Exercice 3 :Soient(Xn)n0,(Yn)n0,(Zn)n0des suites de variables aléatoires indépendantes et identiquement distribuées, toutes les trois indépendantes entre elles, et de même loi 12 1+12 1. On posen= (Xn;Yn;Zn), etSn=Pn k=1k, avecS0= (0;0;0)p.s. a)

Mon trerque (Sn)n0est une chaîne de Markov.

b)

Que v autP(Pn

k=1Xk= 0)pournimpair? c)

Mon trerque P(P2n

k=1Xk= 0) =Cn2n(12 )2n. d)

En déduire q ueP(S2n= (0;0;0)) = (Cn2n(12

)2n)3. e) Donner un équiv alentquan dn! 1deP(S2n= (0;0;0)).On rappelle la formule de Stirling : n!+1nnenp2n. f)

Mon trerque (0;0;0)est transitoire.

Solution de l"exercice3.

a) Soients0;:::;sn+12Z3tels queP(S0=s0;:::;Sn=sn)>0. Alors, commeSn+1=Sn+n+1, on a P(Sn+1=sn+1jS0=s0;:::;Sn=sn) =P(Sn+n+1=sn+1jS0=s0;:::;Sn=sn) =P(sn+n+1=sn+1jS0=s0;:::;Sn=sn) =P(sn+n+1=sn+1); par indépendance den+1et deS0;:::;Sn. On obtient de même que

P(Sn+1=sn+1jSn=sn) =P(sn+n+1=sn+1);

et donc(Sn)nest une chaîne de Markov. b) CommeXnest à valeurs dansf1;+1gp.s., on ne peut revenir en 0 qu"en un nombre pair de pas, et doncP(Pn k=1Xk= 0) = 0pournimpair. c) Pour queP2n k=1Xk= 0il faut quenvariables soient égales à+1etnvariables soient égales à1. Il y a pour celaCn2npossibilités et comme les v.a.Xnsont i.i.d. on obtientP(P2n k=1Xk= 0) =Cn2n(12 )2n. d) CommefS2n= (0;0;0)g=fP2n k=1Xk= 0;P2n k=1Yk= 0;P2n k=1Zk= 0g, par indépendance desXi, Y i,Zion obtient

P(S2n= (0;0;0)) =P

2nX k=1X k= 0 P 2nX k=1Y k= 0 P 2nX k=1Z k= 0 ce qui donne le résultat par la question précédente. e) Par la formule de Stirling, on a quandn! 1, C n2n12 2n (2n)2ne2np4nn

2ne2n2n

12 2n 1pn et en passant à la puissance 3, on obtient

P(S2n= (0;0;0))1(n)3=2:

f) L"espérance du nombre de retour en(0;0;0)N0est

E(N0) =EX

n0? fS2n=0g =X n0P(S2n= (0;0;0)) et commeP(S2n= (0;0;0))1(n)3=2qui est sommable, on aE(N0)<1. Le nombre de retour en (0;0;0)est donc fini p.s., c"est-à-dire que(0;0;0)est transitoire. 3quotesdbs_dbs26.pdfusesText_32
[PDF] definition generale des coefficients techniques de production

[PDF] fiche technique café

[PDF] intensité du café

[PDF] modèle fermé de leontief

[PDF] tableau intensité café nespresso

[PDF] exercices corrigés de comptabilité nationale sur le tableau entrée sortie pdf

[PDF] principales étapes transformation café pdf

[PDF] arômes du café

[PDF] l'économie d'un pays fictif dépend de trois secteurs

[PDF] coefficient technique de production définition

[PDF] input output économie

[PDF] demande d'acte de mariage en ligne nantes

[PDF] etat civil nantes

[PDF] demande dacte de naissance nantes

[PDF] cest quoi un serveur informatique