[PDF] CalculiX CrunchiX USERS MANUAL version 2.19





Previous PDF Next PDF



CalculiX USERS MANUAL - CalculiX GraphiX Version 2.19 -

19 gru 2021 Abaqus which is used by the CalculiX solver ccx. • Ansys



CalculiX CrunchiX USERS MANUAL version 2.19

17 gru 2021 CalculiX GraphiX (cgx) resulting in the mesh in Figure 2. For reasons of clarity only element labels are displayed.



CalculiX USERS MANUAL - CalculiX GraphiX Version 2.17 -

17 lip 2020 This document is the description of CalculiX GraphiX (cgx). This program is ... Abaqus which is used by the CalculiX solver ccx.



CalculiX CrunchiX USERS MANUAL version 2.17

23 lip 2020 2 How to perform CalculiX calculations in parallel ... CalculiX GraphiX (cgx) resulting in the mesh in Figure 2. For reasons of clarity.



CalculiX USERS MANUAL - CalculiX GraphiX Version 2.14 -

29 maj 2018 Abaqus which is used by the CalculiX solver ccx. • Ansys



CalculiX CrunchiX USERS MANUAL version 2.14

28 kwi 2018 2 How to perform CalculiX calculations in parallel ... CalculiX GraphiX (cgx) resulting in the mesh in Figure 2. For reasons of clarity.



CalculiX CrunchiX USERS MANUAL version 2.15

15 gru 2018 2 How to perform CalculiX calculations in parallel ... CalculiX GraphiX (cgx) resulting in the mesh in Figure 2. For reasons of clarity.



CalculiX CrunchiX USERS MANUAL version 2.12

2 kwi 2017 2 How to perform CalculiX calculations in parallel ... Check the quality of your mesh in CalculiX GraphiX or by using any other.



CalculiX CrunchiX USERS MANUAL version 2.13

8 pa? 2017 2 How to perform CalculiX calculations in parallel ... Check the quality of your mesh in CalculiX GraphiX or by using any other.



CalculiX CrunchiX USERS MANUAL version 2.18

15 wrz 2021 2 How to perform CalculiX calculations in parallel ... CalculiX GraphiX (cgx) resulting in the mesh in Figure 2. For reasons of clarity.



[PDF] CalculiX CrunchiX USERS MANUAL version 218

12 fév 2006 · 2 How to perform CalculiX calculations in parallel 12 3 Units 14 4 Golden rules 16 5 Simple example problems



[PDF] CalculiX CrunchiX USERS MANUAL version 219

12 fév 2006 · 2 How to perform CalculiX calculations in parallel 12 3 Units 14 4 Golden rules 16 5 Simple example problems



[PDF] Getting Started with CalculiX - PDF4PRO

Getting Started with CalculiX Jeff Baylor – Convergent Mechanical Solutions LLC CGX Tutorial based on a tutorial by Guido Dhondt



CalculiX CrunchiX USERS MANUAL version 27

How to perform CalculiX calculations in parallel · Units · Golden rules · Simple example problems · Cantilever beam · Frequency calculation of a beam loaded 



[PDF] Calculix FEA Beam Part 1: Buliding Geometry and Meshing

The first of the two Calculix GraphiX cgx handles pre-processing to define a geometry mesh loads and boundary conditions The second program Calculix 



[PDF] NOVICE APPROACH TO CALCULIX

Calculix is a free and open source finite element analysis package It consists of an implicit and explicit solver (CCX) written by Guido Dhondt and a pre and 



[PDF] Calculix manual pdf - Squarespace

Calculix manual pdf Last updated: Sa 30 With CalculiX Finite Element Models can be built calculated and post-processed The pre- and post-processor 



[PDF] Extrait Calculix - Apprendre tables multiplication - DYS-POSITIF

A SAVOIR : On multiplie quand on additionne plusieurs fois le même nombre : Multiplier par 0 et 1 Multiplier par 0 Multiplier par 1



[PDF] Parallel Works + CalculiX for Advanced Structural Analysis

CalculiX is a 3D structural Finite Element software capable of modeling a range of analyses types with industry-standard inputs and highly flexible outputs



[PDF] CalculiX

CalculiX A free software finite element program for three-dimensional thermomechanical calculations The GNU General Public License applies

:
CalculiX CrunchiX USERS MANUAL version 2.19

CalculiX CrunchiX USER"S MANUAL version

2.19

Guido Dhondt

December 17, 2021

Contents

1 Introduction.11

2 How to perform CalculiX calculations in parallel 12

3 Units14

4 Golden rules16

5 Simple example problems18

5.1 Cantilever beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Frequency calculation of a beam loaded by compressive forces . .25

5.3 Frequency calculation of a rotating disk on a slender shaft . . . . 27

5.4 Thermal calculation of a furnace . . . . . . . . . . . . . . . . . . 33

5.5 Seepage under a dam . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Capacitance of a cylindrical capacitor . . . . . . . . . . . . . . . 42

5.7 Hydraulic pipe system . . . . . . . . . . . . . . . . . . . . . . . . 44

5.8 Lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.9 Transient laminar incompressible Couette problem . . . . . . . . 53

5.10 Stationary laminar inviscid compressible airfoil flow . . . . . . . 55

5.11 Laminar viscous compressible compression corner flow . . . . . . 61

5.12 Laminar viscous compressible airfoil flow . . . . . . . . . . . . . . 62

5.13 Channel with hydraulic jump . . . . . . . . . . . . . . . . . . . . 63

5.14 Cantilever beam using beam elements . . . . . . . . . . . . . . . 66

5.15 Reinforced concrete cantilever beam . . . . . . . . . . . . . . . . 72

5.16 Wrinkling of a thin sheet . . . . . . . . . . . . . . . . . . . . . . . 74

5.17 Optimization of a simply supported beam . . . . . . . . . . . . . 78

5.18 Mesh refinement of a curved cantilever beam . . . . . . . . . . . 84

1

2CONTENTS

6 Theory89

6.1 Node Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Element Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Eight-node brick element (C3D8 and F3D8) . . . . . . . . 92

6.2.2 C3D8R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.3 Incompatible mode eight-node brick element (C3D8I) . . 93

6.2.4 Twenty-node brick element (C3D20) . . . . . . . . . . . . 94

6.2.5 C3D20R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.6 Four-node tetrahedral element (C3D4 and F3D4) . . . . . 97

6.2.7 Ten-node tetrahedral element (C3D10) . . . . . . . . . . . 98

6.2.8 Modified ten-node tetrahedral element (C3D10T) . . . . . 98

6.2.9 Six-node wedge element (C3D6 and F3D6) . . . . . . . . 99

6.2.10 Fifteen-node wedge element (C3D15) . . . . . . . . . . . . 100

6.2.11 Three-node shell element (S3) . . . . . . . . . . . . . . . . 100

6.2.12 Four-node shell element (S4 and S4R) . . . . . . . . . . . 101

6.2.13 Six-node shell element (S6) . . . . . . . . . . . . . . . . . 101

6.2.14 Eight-node shell element (S8 and S8R) . . . . . . . . . . . 101

6.2.15 Three-node membrane element (M3D3) . . . . . . . . . . 109

6.2.16 Four-node membrane element (M3D4 and M3D4R) . . . . 109

6.2.17 Six-node membrane element (M3D6) . . . . . . . . . . . . 109

6.2.18 Eight-node membrane element (M3D8 and M3D8R) . . . 109

6.2.19 Three-node plane stress element (CPS3) . . . . . . . . . . 109

6.2.20 Four-node plane stress element (CPS4 and CPS4R) . . . 109

6.2.21 Six-node plane stress element (CPS6) . . . . . . . . . . . 110

6.2.22 Eight-node plane stress element (CPS8 and CPS8R) . . . 110

6.2.23 Three-node plane strain element (CPE3) . . . . . . . . . . 112

6.2.24 Four-node plane strain element (CPE4 and CPE4R) . . . 112

6.2.25 Six-node plane strain element (CPE6) . . . . . . . . . . . 112

6.2.26 Eight-node plane strain element (CPE8 and CPE8R) . . . 112

6.2.27 Three-node axisymmetric element (CAX3) . . . . . . . . 112

6.2.28 Four-node axisymmetric element (CAX4 and CAX4R) . . 113

6.2.29 Six-node axisymmetric element (CAX6) . . . . . . . . . . 113

6.2.30 Eight-node axisymmetric element (CAX8 and CAX8R) . 113

6.2.31 Two-node 2D beam element (B21) . . . . . . . . . . . . . 115

6.2.32 Two-node 3D beam element (B31 and B31R) . . . . . . . 115

6.2.33 Three-node 3D beam element (B32 and B32R) . . . . . . 115

6.2.34 Two-node 2D truss element (T2D2) . . . . . . . . . . . . 121

6.2.35 Two-node 3D truss element (T3D2) . . . . . . . . . . . . 121

6.2.36 Three-node 3D truss element (T3D3) . . . . . . . . . . . . 123

6.2.37 Three-node network element (D) . . . . . . . . . . . . . . 123

6.2.38 Two-node unidirectional gap element (GAPUNI) . . . . . 124

6.2.39 Two-node 3-dimensional dashpot (DASHPOTA) . . . . . 124

6.2.40 One-node 3-dimensional spring (SPRING1) . . . . . . . . 125

6.2.41 Two-node 3-dimensional spring (SPRING2) . . . . . . . 125

6.2.42 Two-node 3-dimensional spring (SPRINGA) . . . . . . . 126

6.2.43 One-node coupling element (DCOUP3D) . . . . . . . . . 126

CONTENTS3

6.2.44 One-node mass element (MASS) . . . . . . . . . . . . . . 126

6.2.45 User Element (Uxxxx) . . . . . . . . . . . . . . . . . . . . 126

6.2.46 User Element: 3D Timoshenko beam element (U1) . . . . 127

6.2.47 User Element: 3-node shell element (US3) . . . . . . . . . 127

6.3 Beam Section Types . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.1 Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.2 Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.3 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Fluid Section Types: Gases . . . . . . . . . . . . . . . . . . . . . 132

6.4.1 Orifice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4.2 Bleed Tapping . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4.3 Preswirl Nozzle . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4.4 Straight and Stepped Labyrinth . . . . . . . . . . . . . . . 141

6.4.5 Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4.6 Carbon Seal . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4.7 Gas Pipe (Fanno) . . . . . . . . . . . . . . . . . . . . . . 148

6.4.8 Rotating Gas Pipe (subsonic applications) . . . . . . . . . 154

6.4.9 Restrictor, Long Orifice . . . . . . . . . . . . . . . . . . . 157

6.4.10 Restrictor, Enlargement . . . . . . . . . . . . . . . . . . . 161

6.4.11 Restrictor, Contraction . . . . . . . . . . . . . . . . . . . 162

6.4.12 Restrictor, Bend . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.13 Restrictor, Wall Orifice . . . . . . . . . . . . . . . . . . . 164

6.4.14 Restrictor, Entrance . . . . . . . . . . . . . . . . . . . . . 166

6.4.15 Restrictor, Exit . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.16 Restrictor, User . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.17 Branch, Joint . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.18 Branch, Split . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.19 Cross, Split . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.20 Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.21 M¨ohring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.4.22 Change absolute/relative system . . . . . . . . . . . . . . 181

6.4.23 In/Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.4.24 Mass Flow Percent . . . . . . . . . . . . . . . . . . . . . . 184

6.4.25 Network User Element . . . . . . . . . . . . . . . . . . . . 184

6.5 Fluid Section Types: Liquids . . . . . . . . . . . . . . . . . . . . 185

6.5.1 Pipe, Manning . . . . . . . . . . . . . . . . . . . . . . . . 186

6.5.2 Pipe, White-Colebrook . . . . . . . . . . . . . . . . . . . . 187

6.5.3 Pipe, Sudden Enlargement . . . . . . . . . . . . . . . . . 188

6.5.4 Pipe, Sudden Contraction . . . . . . . . . . . . . . . . . . 189

6.5.5 Pipe, Entrance . . . . . . . . . . . . . . . . . . . . . . . . 190

6.5.6 Pipe, Diaphragm . . . . . . . . . . . . . . . . . . . . . . . 190

6.5.7 Pipe, Bend . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.5.8 Pipe, Gate Valve . . . . . . . . . . . . . . . . . . . . . . . 193

6.5.9 Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.5.10 In/Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.6 Fluid Section Types: Open Channels . . . . . . . . . . . . . . . . 195

4CONTENTS

6.6.1 Straight Channel . . . . . . . . . . . . . . . . . . . . . . . 196

6.6.2 Sluice Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.6.3 Sluice Opening . . . . . . . . . . . . . . . . . . . . . . . . 198

6.6.4 Weir Crest . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.6.5 Weir slope . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.6.6 Discontinuous Slope . . . . . . . . . . . . . . . . . . . . . 201

6.6.7 Discontinuous Opening . . . . . . . . . . . . . . . . . . . 202

6.6.8 Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.6.9 Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.6.10 Enlargement . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.6.11 Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.6.12 Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.6.13 In/Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.7 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.7.1 Single point constraints (SPC) . . . . . . . . . . . . . . . 206

6.7.2 Multiple point constraints (MPC) . . . . . . . . . . . . . 206

6.7.3 Kinematic and Distributing Coupling . . . . . . . . . . . 206

6.7.4 Mathematical description of a knot . . . . . . . . . . . . . 211

6.7.5 Node-to-Face Penalty Contact . . . . . . . . . . . . . . . 214

6.7.6 Face-to-Face Penalty Contact . . . . . . . . . . . . . . . . 230

6.7.7 Face-to-Face Mortar Contact . . . . . . . . . . . . . . . . 236

6.8 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.8.1 Linear elastic materials . . . . . . . . . . . . . . . . . . . 238

6.8.2 Linear elastic materials for large strains (Ciarlet model) . 238

6.8.3 Linear elastic materials for rotation-insensitive small strains239

6.8.4 Ideal gas for quasi-static calculations . . . . . . . . . . . . 240

6.8.5 Hyperelastic and hyperfoam materials . . . . . . . . . . . 241

6.8.6 Deformation plasticity . . . . . . . . . . . . . . . . . . . . 242

6.8.7 Incremental (visco)plasticity: multiplicative decomposition 242

6.8.8 Incremental (visco)plasticity: additive decomposition . . . 244

6.8.9 Tension-only and compression-only materials. . . . . . . . 244

6.8.10 Fiber reinforced materials. . . . . . . . . . . . . . . . . . . 245

6.8.11 The Cailletaud single crystal model. . . . . . . . . . . . . 247

6.8.12 The Cailletaud single crystal creep model. . . . . . . . . . 250

6.8.13 Elastic anisotropy with isotropic viscoplasticity. . . . . . . 252

6.8.14 Elastic anisotropy with isotropic creep defined by a creep usersubroutine.255

6.8.15 User materials . . . . . . . . . . . . . . . . . . . . . . . . 257

6.9 Types of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6.9.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . 257

6.9.2 Frequency analysis . . . . . . . . . . . . . . . . . . . . . . 258

6.9.3 Complex frequency analysis . . . . . . . . . . . . . . . . . 263

6.9.4 Buckling analysis . . . . . . . . . . . . . . . . . . . . . . . 264

6.9.5 Modal dynamic analysis . . . . . . . . . . . . . . . . . . . 265

6.9.6 Steady state dynamics . . . . . . . . . . . . . . . . . . . . 267

6.9.7 Direct integration dynamic analysis . . . . . . . . . . . . 270

6.9.8 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . 271

CONTENTS5

6.9.9 Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

6.9.10 Shallow water motion . . . . . . . . . . . . . . . . . . . . 274

6.9.11 Hydrodynamic lubrication . . . . . . . . . . . . . . . . . . 275

6.9.12 Irrotational incompressible inviscid flow . . . . . . . . . . 275

6.9.13 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . 277

6.9.14 Stationary groundwater flow . . . . . . . . . . . . . . . . 279

6.9.15 Diffusion mass transfer in a stationary medium . . . . . . 280

6.9.16 Aerodynamic Networks . . . . . . . . . . . . . . . . . . . 281

6.9.17 Hydraulic Networks . . . . . . . . . . . . . . . . . . . . . 284

6.9.18 Turbulent Flow in Open Channels . . . . . . . . . . . . . 286

6.9.19 Three-dimensional Navier-Stokes Calculations . . . . . . 288

6.9.20 Shallow water calculations . . . . . . . . . . . . . . . . . 302

6.9.21 Substructure Generation . . . . . . . . . . . . . . . . . . 307

6.9.22 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . 308

6.9.23 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 320

6.9.24 Green functions . . . . . . . . . . . . . . . . . . . . . . . . 323

6.9.25 Crack propagation . . . . . . . . . . . . . . . . . . . . . . 324

6.10 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . 330

6.10.1 Thermomechanical iterations . . . . . . . . . . . . . . . . 330

6.10.2 Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

6.10.3 Line search . . . . . . . . . . . . . . . . . . . . . . . . . . 335

6.10.4 Network iterations . . . . . . . . . . . . . . . . . . . . . . 336

6.10.5 Implicit dynamics . . . . . . . . . . . . . . . . . . . . . . 337

6.11 Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

6.11.1 Point loads . . . . . . . . . . . . . . . . . . . . . . . . . . 339

6.11.2 Facial distributed loading . . . . . . . . . . . . . . . . . . 339

6.11.3 Centrifugal distributed loading . . . . . . . . . . . . . . . 343

6.11.4 Gravity distributed loading . . . . . . . . . . . . . . . . . 343

6.11.5 Forces obtained by selecting RF . . . . . . . . . . . . . . 344

6.11.6 Temperature loading in a mechanical analysis . . . . . . . 345

6.11.7 Initial(residual) stresses . . . . . . . . . . . . . . . . . . . 345

6.11.8 Concentrated heat flux . . . . . . . . . . . . . . . . . . . . 347

6.11.9 Distributed heat flux . . . . . . . . . . . . . . . . . . . . . 347

6.11.10Convective heat flux . . . . . . . . . . . . . . . . . . . . . 347

6.11.11Radiative heat flux . . . . . . . . . . . . . . . . . . . . . . 347

6.12 Error estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

6.12.1 Zienkiewicz-Zhu error estimator . . . . . . . . . . . . . . . 348

6.12.2 Gradient error estimator . . . . . . . . . . . . . . . . . . . 349

6.13 Output variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

7 Input deck format353

7.1 *AMPLITUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

7.2 *BASE MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

7.3 *BEAM SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 357

7.4 *BOUNDARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

7.4.1 Homogeneous Conditions . . . . . . . . . . . . . . . . . . 361

6CONTENTS

7.4.2 Inhomogeneous Conditions . . . . . . . . . . . . . . . . . 362

7.4.3 Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

7.5 *BUCKLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

7.6 *CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

7.7 *CFLUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

7.8 *CHANGE FRICTION . . . . . . . . . . . . . . . . . . . . . . . 368

7.9 *CHANGE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . 368

7.10 *CHANGE PLASTIC . . . . . . . . . . . . . . . . . . . . . . . . 369

7.11 *CHANGE SURFACE BEHAVIOR . . . . . . . . . . . . . . . . 370

7.12 *CHANGE SOLID SECTION . . . . . . . . . . . . . . . . . . . . 370

7.13 *CLEARANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

7.14 *CLOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

7.15 *COMPLEX FREQUENCY . . . . . . . . . . . . . . . . . . . . . 375

7.16 *CONDUCTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . 376

7.17 *CONSTRAINT . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

7.18 *CONTACT DAMPING . . . . . . . . . . . . . . . . . . . . . . . 379

7.19 *CONTACT FILE . . . . . . . . . . . . . . . . . . . . . . . . . . 379

7.20 *CONTACT OUTPUT . . . . . . . . . . . . . . . . . . . . . . . 382

7.21 *CONTACT PAIR . . . . . . . . . . . . . . . . . . . . . . . . . . 382

7.22 *CONTACT PRINT . . . . . . . . . . . . . . . . . . . . . . . . . 384

quotesdbs_dbs28.pdfusesText_34
[PDF] calcul en ligne ce2

[PDF] calcul en ligne cp

[PDF] calcul en ligne ce1

[PDF] eduscol initiation a la programmation

[PDF] calcul en ligne cm2

[PDF] eduscol maths cycle 3

[PDF] calcul en ligne cm1

[PDF] eduscol grandeurs et mesures

[PDF] quelle est la formule pour calculer la puissance p consommée par un appareil en courant continu ?

[PDF] calculer l'énergie en joule

[PDF] formule datedif en anglais

[PDF] datedif en francais

[PDF] calculer le nombre d'heures entre deux dates excel

[PDF] loi normale ecart type inconnu

[PDF] statistique excel