[PDF] Cours de Statistiques inférentielles





Previous PDF Next PDF



Statistiques à deux variables : les exercices

Statistiques à deux variables : les exercices. Exercice 1. (Dans tout cet statistique double de variables x et y; arrondir à. 10−2 ;. (b) déterminer une ...



Exercices - Statistiques à deux variables - Terminale STHR

STATISTIQUES. EXERCICE 1. Représenter dans un repère du plan le nuage de points de la série statistique ci-dessous. xi. −3. 0. 3. 5. 8 yi. 1. −1. −2. 5. 7.



Statistique à deux variables

Avec les données de l'exercice précédent représenter à l'aide d'un tableur le nuage de points correspondant



Exercices Corrigés Statistique et Probabilités

Quelle est la loi de probabilité de la variable aléatoire X ? Calculer son espérance mathématique et sa variance. 2. En utilisant cette loi calculer la 



Statistiques à deux variables MathsComp 1 Ajustement affine

On obtient alors une série statistique à deux variables quantitatives ou série statistique double qui peut Corrigés d'exercices du manuel. Page 29. Question 1 ...



Série statistique à deux variables A

Le tableau suivant donne le taux d'équipement en lave-linge des ménages français de 1955 à 1985. Dans tout l'exercice le détail des calculs n'est pas demandé.



Thème 14: Statistique à 2 variables

b) Proposer une équation de cette droite d'ajustement. c) Proposer quelques constats. Exercice 14.2: À propos des élèves (garçons puis filles) de 4 classes de 



Statistiques descriptives et exercices

Rappels de cours et exercices corrigés sur la statistique descriptive REPRÉSENTATION DES SÉRIES STATISTIQUES À DEUX VARIABLES observe les notes de math3 X et ...



Exercice corrigé Chapitre 4 : statistiques à 2 variables

Exercice corrigé. Chapitre 4 : statistiques à 2 variables. Une entreprise de vente par correspondance établit un bilan de son chiffre d'affaire en fonction du 



Cours de probabilités et statistiques

Exercice 5 — Soient X et Y deux variables aléatoires indépendantes de lois respectives correction dite correction de Yates et on calcule. D2 = ∑ cases. (



Statistiques à deux variables : les exercices

Statistiques à deux variables : les exercices. Exercice 1. (Dans tout cet exercice les résultats concernant la population seront arrondis au million).



Statistiques descriptives et exercices

Rappels de cours et exercices corrigés sur la statistique descriptive 4.1 Représentation des séries statistiques à deux variables .



Exercices Corrigés Statistique et Probabilités

Exercice 2. On observe 100 fois le nombre d'arrivées (variable X) de clients à un bureau de poste pendant un intervalle de temps (10 minutes) et on obtient 



Thème 14: Statistique à 2 variables

b) Proposer une équation de cette droite d'ajustement. c) Proposer quelques constats. Exercice 14.2: À propos des élèves (garçons puis filles) de 4 classes de 



LEÇON 06 : STATISTIQUE À DEUX VARIABLES

Plan du cours. I. Présentation de la série statistique double. II. L'ajustement. III. L'estimation. IV. Exercice de synthèse. Terminale A. Mathématiques 



Résumé du Cours de Statistique Descriptive

15 déc. 2010 http://cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf ... 3.2.1 Représentation graphique de deux variables . . . . . . . . 53.



Série statistique à deux variables A

Dans tout l'exercice le détail des calculs n'est pas demandé. Les résultats pourront être obtenus à la calculatrice et seront arrondis à près. Partie A. Donner 



Exercices et problèmes de statistique et probabilités

1.6 Indépendance de deux variables aléatoires X et Y .. Corrigés des exercices . ... hender les concepts et les notions de base de la statistique.



Statistique à deux variables

Avec les données de l'exercice précédent représenter à l'aide d'un tableur le nuage de points correspondant



Cours de Statistiques inférentielles

La somme de deux variables gaussiennes indépendantes est elle-même une variable Ref : Statistique exercices corrigés

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

loi.normale.standard.inverse(1)Khi-Deux 2()K

2khideux(k;;1)

;1;2inverse.Loi.f(;1;2))

8CHAPITRE 1. LOIS STATISTIQUES

Chapitre2Convergences

2.1 Convergence en probabilité

2.1.1 Inégalités utiles

Inégalité de Markov simplifiée

SoitYune v.a.r.,gune fonction croissante et positive ou nulle sur l"ensemble des réels, vérifiantg(a)>0,

alors

8a >0;P(Ya)E(g(Y))g(a):

Preuve

E(g(Y)) =Z

g(y)f(y)dy=Z Y Yag(y)f(y)dy

Z

Yag(y)f(y)dycargest positive ou nulle

g(a)Z

Yaf(y)dycargest croissante

=g(a)P(Ya)

AinsiE(g(Y))g(a)P(Ya).

Rappel : Inégalité de Bienaymé-Chebyshev

SoitXune variable aléatoire admettant une espéranceE(X)et de variance finie2(l"hypothèse de variance finie garantit l"existence de l"espérance).

L"inégalité de Bienaymé-Chebychev s"énonce de la façon suivante : pour tout réel"strictement positif,

P(jXE(X)j ")2"

2: PreuveVoir Cours S3 ou prendreY=jXE(X)j,a="etg(t) =t2dans l"inégalité de Markov.

10CHAPITRE 2. CONVERGENCES2.1.2 Convergence en probabilité

Définition 4 (Convergence en probabilité)On considère une suite(Xn)d"une v.a. définie sur

Xune autre v.a. définie sur

On dit que la suite(Xn)converge en probabilité vers une constante réelle`si

8" >0;limn!1P(jXn`j> ") = 0:

On dit que la suite(Xn)converge en probabilité versXsi

8" >0;limn!1P(jXnXj> ") = 0:

Exemple de la loi binomiale :On réalisenexpériences indépendantes et on suppose que lors de

chacune de ces expériences, la probabilité d"un événement appelé "succès" estp. SoitSnle nombre de

succès obtenus lors de cesnexpériences. La variance aléatoireSn, somme denvariables de Bernoulli

indépendantes, de même paramètrep, suit une loi binomiale :Sn,! B(n;p). On s"intéresse alors à la variable aléatoire Snn , proportion de succès surnexpériences, a donc pour espéranceE(Snn ) =pet pour varianceV(Snn ) =1n

2V(Sn) =p(1p)n

. Commep(1p)atteint son maximum

lorsquep= 1=2, on a ainsip(1p)1=4. En appliquant l"inégalité de Bienaymé-Chebyshev, il vient

P(jSn=npj ")p(1p)n"

214n"2:

Ainsi pour tout" >0, il existe >0(plus précisément >14n"2) tel queP(jSn=npj ")< ou encorelimn!1P(jSn=npj ") = 0. La variable aléatoireSnn converge en probabilité versp.

Théorème 2.1.1Soit(Xn)une suite de variables aléatoires sur le même espace probabilisé(

;P)ad- mettant des espérances et des variances vérifiant lim n!1E(Xn) =`etlimn!1V(Xn) = 0; alors les(Xn)convergent en probabilité vers`. PreuveSoit" >0. PosonsE(Xn) =`+unaveclimun= 0. Alors il existeN2Ntel que : nN) junj< "=2 et donc à partir du rangN, jXnE(Xn)j< "=2) jXn`j< ";(2.1) carjXn`j=jXnE(Xn) +E(Xn)`j jXnE(Xn)j+jE(Xn)`j. L"implication (2.1) peut être encore écrite sous la forme jXn`j ") jXnE(Xn)j "=2: Par conséquent, en utilisant l"inégalité de Bienaymé-Chebyshev,

P(jXn`j ")P(jXnE(Xn)j "=2)V(Xn)("=2)2;

qui tend vers 0 quandntend vers l"infini. Conséquence : Pour que(Xn)converge en probabilité versX, il suffit queE(XnX)!0etV(XnX)!

0lorsquen! 1(la démonstration passe par l"inégalité de Bienaymé-Chebychev).

Cours Proba-Stat / Pierre DUSART112.1.3 Convergence en moyenne quadratique Définition 5Une suite de v.a.r.(Xn)n2Nconverge en moyenne quadratique vers une v.a.r.Xsi lim n!1E((XnX)2) = 0:

Propriétés :

1. La convergence en moyenne quadratique entraîne la convergence en probabilité.

2. Pour les(Xn)sont des variables aléatoires d"espérance et de variance finies, siE(Xn)!et

V ar(Xn)!0alorsXnconverge en moyenne quadratique vers. Preuve1. On applique l"inégalité de Markov avecY=jXnXj,a="2etg(t) =t2. Il suffit ensuite de remarquer queP(jXnXj2> "2) =P(jXnXj> ")et utiliser l"hypothèse que limE((XnX)2) = 0.

2.limE((Xn)2) = limE(X2n)2E(X) +2= limE(X2n)E(Xn)2= limV(Xn) = 0:

2.1.4 Loi faible des grands nombres

Théorème 2.1.2Soit(Xn)une suite de variables aléatoires indépendantes sur le même espace probabi-

lisé( ;P)ayant une même espérance mathématique`et des variances vérifiantlimn!11n 2Pn i=12i= 0:

On poseSn=X1++XnalorsSnn

converge en probabilité vers`.

Si on considère une suite de variables aléatoires(Xn)indépendantes définies sur un même espace probabi-

lisé, ayant même espérance et même variance finie notées respectivementE(X)etV(X). La loi faible des

grands nombres stipule que, pour tout réel"strictement positif, la probabilité que la moyenne empirique

S nn s"éloigne de l"espérance d"au moins", tend vers 0 quandntend vers l"infini. La moyenneSnn converge en probabilité vers l"espérance communeE(X).

PreuveOn aE(Sn=n) =`etlimV(Sn=n) = lim1n

2P2i= 0par hypothèse. Ainsi par le théorème

2.1.1,Sn=nconverge en probabilité vers`.

2.2 Convergence en loi

Définition 6Soient(Xn)etXdes variables aléatoires sur un même espace probabilisé( ;P), de fonc- tions de répartition respectivesFnetF; on dit que les(Xn)convergent versXen loi (et on noteXnL!X) si en tout pointxoùFest continue, lesFn(x)convergent versF(x).

Propriétés : (admises)

1. La convergence en probabilité entraîne la convergence en loi.(XnP!X))(XnL!X)

2. Si les(Xn)etXsont des variables aléatoires discrètes, alorsXnconverge en loi versXsi et

seulement si

8x2R;limn!1P(Xn=x) =P(X=x):

PreuveIl s"agit de montrer que si(Xn)nconverge en probabilité versX, la suite(FXn)nconverge vers F

X(respectivement préalablement notéesFnetF). On utilise le lemme suivant : soientA,Bdes variables

aléatoires réelles,cun réel et" >0. Alors on a l"inégalité

P(Ac)B(c+") +P(jABj> ");

12CHAPITRE 2. CONVERGENCEScar

P(AC) =P(Ac\Bc+") +P(Ac\B > c+")

=P(AcjBc+")P(Bc+") +P(Ac\B" > c)

P(Bc+") +P(AB >")carP(j)1

P(Bc+") +P(jABj> ")

carP(jABj> ") =P(AB > ") +P(AB <")P(AB <") De ce lemme, il vient respectivement pour(A=Xn; c=x; B=X)puis(A=X; c=x"; B=Xn)

P(Xnx)P(Xx+") +P(jXnXj> ")(2.2)

P(Xnx)P(Xx") +P(jXnXj> ")(2.3)

Passons à la démontration proprement dite. Soitxun point oùFest continue. Soit >0. Par continuité

deFXenx, il existe" >0tel quejFX(x+")FX(x)j< =2etjFX(x")FX(x)j< =2. Pour cet", de part la convergence de(Xn)nversX, il existen0tel que, pour toutnn0,

P(jXnXj> ")< =2:

Ainsi par(2:2),

F

Xn(x)FX(x)FX(x+") +P(jXnXj> ")FX(x)

FX(x+")FX(x) +P(jXnXj> ")< =2 +=2 =

et par(2:3), F

Xn(x)FX(x)FX(x")FX(x)P(jXnXj> ")

=2=2 =

Donc8 >0;9n0tel que8nn0;jFXn(x)FX(x)j< .

Proposition 2.2.1 (Convergence de la loi hypergéométrique vers la loi binomiale)Soit(XN)

une suite de variables aléatoires sur un même espace probabilisé, de loi hypergéométrique :XN,!

H(N;n;p)oùnetpsont supposés constants. Alors(XN)convergent en loi, quandNtend vers l"in- fini, versXde loi binomialeB(n;p)(mêmes valeurs de paramètres).

PreuveLa probabilité ponctuelle deXNest

P(XN=k) =CkNpCnk

NqC nN:

LorsqueNtend vers l"infini avecnconstant,

C nN=N(N1)(Nn+ 1)n!=Nn(11N )(1n1N )1n!Nnn! car(1mN )1lorsqueNtend vers l"infini. De même, lorsqueNtend vers l"infini avecpetkfixes, alors C kNp(Np)kk!etCnk

N(1p)(N(1p))nk(nk)!:

Finalement,

P(XN=k)pk(1p)nkn!k!(nk)!=Cknpk(1p)nk;

ce qui correspond à la probabilité ponctuelle d"une variable aléatoire qui suit la loi binomialeB(n;p).

Cours Proba-Stat / Pierre DUSART13C"est pour cela que lorsque la population (de tailleN) est très grande, on peut assimiler la loi d"une

variable aléatoire comptant le nombre de réussite sur un tirage sans remise (loi hypergéométrique) à une

loi binomiale (tirage avec remise). Proposition 2.2.2 (Convergence de la loi binomiale vers une loi de Poisson)Soit(Xn)une

suite de variables aléatoires binomiales sur un même espace probabilisé : pour toutn,XnsuitB(n;pn).

On suppose quelimn!+1pn= 0etlimn!+1npn=. Alors(Xn)convergent en loi, quandntend vers l"infini, vers une loi de Poisson de paramètre.

PreuvePourkfixé,

P(Xn=k) =n(n1)(nk+ 1)k!pkn(1pn)nk

(npn)kk!(1pn)n(11n )(1k1n )(1pn)k On cherche la limite de(1pn)n= exp(nln(1pn)) = exp(nln(1npn=n)). Commelimn!+1npn=, on posenpn=+"naveclimn!+1"n= 0et ainsiln(1npn=n)1=ndonclimn!+1(1pn)n=e.

Commekest fixé,limn!+1(11n

)(1k1n )(1pn)k= 1quotesdbs_dbs1.pdfusesText_1
[PDF] exercices corrigés de statistique descriptive avec rappels de cours pdf

[PDF] exercices corrigés de statistique descriptive bernard py pdf

[PDF] exercices corrigés de statistique descriptive problèmes exercices et qcm pdf

[PDF] exercices corrigés de statistique pdf

[PDF] exercices corrigés de statistiques mathématiques pdf

[PDF] exercices corrigés de thermochimie s2

[PDF] exercices corrigés de thermochimie s2 pdf

[PDF] exercices corriges de thermodynamique pdf

[PDF] exercices corrigés de thermodynamique pdf s1

[PDF] exercices corrigés de traitement des eaux pdf

[PDF] exercices corrigés de vibrations et ondes pdf

[PDF] exercices corrigés dérivées terminale s

[PDF] exercices corrigés dessin technique projection orthogonale pdf

[PDF] exercices corrigés diagnostic financier

[PDF] exercices corrigés dipole rc terminale s