[PDF] Résistance des matériaux : élasticité méthodes énergétiques





Previous PDF Next PDF



EXERCICES

Exercice 8. Exercice 9. Exercice 10 4 Énergie potentielle de pesanteur. Exercice 25 ... masse m = 1.0 t a une énergie cinétique. Ec = 1.6 × 105 J.



EXERCICES ENERGIE CINETIQUE et POTENTIELLE

EXERCICES ENERGIE CORRIGE.docx Calculer l'énergie cinétique d'une voiture de masse 125 tonne roulant à la vitesse ... ENERGIE POTENTIELLE ET CINETIQUE.



Exercices et Contrôles Corrigés de Mécanique du Point Matériel

On se propose de traiter dans cet exercice le déplacement élémentaire dans les trois Calculer l'énergie cinétique Ec et l'énergie potentielle Ep de M en ...



Problèmes de physique de concours corrigés – 1ère année de

Cet exercice présente l'expérience historique de diffusion d'une particule où E0 représente l'énergie cinétique initiale de la particule ? égale à la ...



PHQ114: Mecanique I

30 mai 2018 C'est en fait l'énergie totale (cinétique + potentielle) de la masse. Problème 2.7 ... B Reprenez l'exercice cette fois pour V = ??Rex .



Résistance des matériaux : élasticité méthodes énergétiques

20 jui. 2011 4.1.2 Énergie cinétique . ... 4.1.3 Énergie potentielle et éléments finis . ... 4.2.5 Exercice : contraintes et énergie de déformation .



Travail énergie potentielle

http://www.sosryko.fr/atelier/Phy.Meca/2011-2012/Meca-Exos3_1112.pdf



Niveau : 1 BAC Physique Chimie

Calculer la valeur de l'énergie cinétique de la barre quand elle retombe sur le sol. Exercice 2. On étudie la chute libre (on néglige les forces de 



CH 7 ÉNERGIE TRAVAIL ET PRINCIPE DE CONSERVATION

le pourcentage d'augmentation de son énergie cinétique? 7.2. L'ÉNERGIE POTENTIELLE. GRAVITATIONNELLE (RELATIVE). 7.4 Exercices : Le Taipei 101 solution ?.



Exercices dénergie potentielle - énergie mécanique

4- Calculer la valeur de l'énergie cinétique de la balle lorsqu'elle arrive au sol. En déduire sa vitesse. Exercice 8 : Une pomme de masse = 150 accrochée 

R´esistance des mat´eriaux :

´elasticit´e,

m´ethodes ´energ´etiques, m´ethode des ´el´ements finis

Rappels de cours

et exercices avec solutions

Yves Debard

Institut Universitaire de Technologie du Mans

D´epartement G´enie M´ecanique et Productique

20 juin 2011

Table des mati`eres

1

´Elasticit´e

1

1.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 D´eplacements et d´eformations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Contraintes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Loi de comportement ou loi constitutive

. . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Cas particulier : ´etat de contraintes planes

. . . . . . . . . . . . . . . . . . . . . 3

1.1.5 Formules math´ematiques

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 M´ethode des ´el´ements finis : approche r´esistance des mat´eriaux

25

2.1 Rappels : r´esolution d'un probl`eme stationnaire

. . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Partition des degr´es de libert´e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Calcul des d´eplacements inconnus

. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Calcul des r´eactions d'appui

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Poutre soumise `a un effort normal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Treillis plans `a noeuds articul´es

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Poutre soumise `a un moment de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Flexion des poutres `a plan moyen : mod`ele de Bernoulli

. . . . . . . . . . . . . . . . . 58

2.5.1 Rappels : flexion dans le plan{xy}

. . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 M´ethodes ´energ´etiques : poutres

83

3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Expression de l'´energie de d´eformation en fonction des forces appliqu´ees : for-

mule de Clapeyron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.2 Th´eor`eme de r´eciprocit´e de Maxwell-Betti

. . . . . . . . . . . . . . . . . . . . . 83

3.1.3 Th´eor`eme de Castigliano

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.4 Th´eor`eme de M´enabr´ea

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.5

´Energie de d´eformation d'une poutre

. . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.6 Formules math´ematiques utiles

. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IIExercices de resistance des materiaux

4 M´ethode des ´el´ements finis

121

4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.1

´Energie de d´eformation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.2

´Energie cin´etique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.1.3

´Energie potentielle et ´el´ements finis

. . . . . . . . . . . . . . . . . . . . . . . . 123

4.1.4 Modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Assemblage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.2 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 126

4.2.3 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.4 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.5 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 132

4.2.6 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 134 4.2.7 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 137

4.2.8 Exercice : modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2.9

´El´ement fini de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.10

´El´ement fini de flexion : mod`ele de Bernoulli . . . . . . . . . . . . . . . . . . . 144

4.2.11 Exercice : ´elasticit´e plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapitre 1

Elasticit´e

1.1 Rappels

Les d´eplacements et les d´eformations sont petits.

1.1.1 D´eplacements et d´eformations

Vecteur d´eplacement :

⃗u=---→M0M ,{u}= u(x,y,z) v(x,y,z) w(x,y,z) (1.1.1)

Tenseur des d´eformations :

xx1 2

γxy1

2

γxz

1 2

γxyεyy1

2

γyz

1 2

γxz1

2

γyzεzz

,[ε]T= [ε](1.1.2) xx=∂u ∂x , εyy=∂v ∂y , εzz=∂w ∂z (1.1.3a) xy=∂u ∂y +∂v ∂x , γxz=∂u ∂z +∂w ∂x , γyz=∂w ∂y +∂v ∂z (1.1.3b) Allongement unitaire enMdans la direction{n}= n x n y n z

ε(M,⃗n) ={n}T[ε(M)]{n}

Glissement enMdans les directions orthogonales⃗naet⃗nb: γ(M,⃗na,⃗nb) = 2{nb}T[ε(M)]{na},{nb}T{na}= 0(1.1.5)

Variation relative de volume :

V(M) = tr[ε] =εxx+εyy+εzz(1.1.6)

2Exercices de resistance des materiaux

1.1.2 Contraintes

Vecteur contrainte sur la facette⃗nenM:

T(M,⃗n) =σn⃗n+⃗τn(1.1.7a)

Soit{n}=

n x n y n z un vecteur unitaire enM. Le vecteur contrainte sur la facette⃗nenMest donn´e par la formule de Cauchy : T x T y T z xxσyxσzx xyσyyσzy xzσyzσzz n x n y n z ,{T}= [σ(M)]{n}(1.1.8) o`u [σ(M)] est le tenseur des contraintes enM.

Le tenseur des contraintes est sym´etrique :

[σ] = [σ]Tsoitσxy=σyx, σxz=σzx, σyz=σzy(1.1.9)

La contrainte normale sur la facette⃗nest :

n={n}T[σ]{n} =n2xσxx+n2yσyy+n2zσzz+ 2nxnyσxy+ 2nxnzσxz+ 2nynzσyz(1.1.10) Soientσ1,σ2etσ3les trois contraintes principales en un pointMd'un solide. Les crit`eres de

Rankine, Von Mises et de Tresca s'´ecrivent :

1 2

1.1.3 Loi de comportement ou loi constitutive

Si le mat´eriau est isotrope, la loi de comportement s'´ecrit : xx=1 E (σxx-ν(σyy+σzz)) yy=1 E (σyy-ν(σxx+σzz)) zz=1 E (σzz-ν(σxx+σyy))(1.1.12a) xy=σxy G , γxz=σxz G , γyz=σyz G , G=E

2(1 +ν)(1.1.12b)

o`uEetνsont respectivement le module de Young et le coefficient de Poisson du mat´eriau.

Elasticite3

1.1.4 Cas particulier : ´etat de contraintes planes

Le tenseur des contraintes se r´eduit `a :

xxσxy0 xyσyy0

0 0 0

(1.1.13) d'o`u l'expression du tenseur des d´eformations : xx1 2

γxy0

1 2

γxyεyy0

0 0εzz

(1.1.14) et de la loi de comportement : xx=E

1-ν2(εxx+ν εyy), σyy=E

1-ν2(εyy+ν εxx)

zz=-ν E (σxx+σyy), σxy=Gγxy, G=E

2(1 +ν)(1.1.15)

Les contraintes et les d´eformations principales sont : 1 2} =σxx+σyy 2 ±1 2 (σxx-σyy)2+ 4σ2xy, σ3= 0(1.1.16) 1 2} =εxx+εyy 2 ±1 2 (εxx-εyy)2+γ2xy, ε3=εzz(1.1.17)

Les directions principales sont :

{n1}= cosθ1 sinθ1

0

,{n2}= -sinθ1 cosθ1

0

,{n3}= 0 0

1

avec tanθ1=σ1-σxx xy(1.1.18) Les crit`eres de Rankine, Von Mises et de Tresca se r´eduisent `a : L'allongement unitaire enMdans la direction{n}= n x n y

0

se r´eduit `a : ε(M,⃗n) ={n}T[ε(M)]{n}=n2xεxx+n2yεyy+nxnyγxy(1.1.20)

4Exercices de resistance des materiaux

1.1.5 Formules math´ematiques

quotesdbs_dbs1.pdfusesText_1
[PDF] exercices corrigés énergie de liaison dun noyau

[PDF] exercices corrigés ensembles applications relations

[PDF] exercices corrigés enthalpie libre et potentiel chimique

[PDF] exercices corriges equilibre d'un solide mobile autour d'un axe fixe

[PDF] exercices corrigés fiabilité des systèmes

[PDF] exercices corrigés finance de marché

[PDF] exercices corrigés firewall

[PDF] exercices corrigés fonctions numériques terminale s

[PDF] exercices corriges genetique des haploides

[PDF] exercices corrigés génétique dihybridisme

[PDF] exercices corrigés géométrie affine mpsi

[PDF] exercices corrigés géométrie dans lespace terminale s

[PDF] exercices corrigés gestion de projet pdf

[PDF] exercices corrigés gradient divergence rotationnel pdf

[PDF] exercices corrigés histogramme image