[PDF] Corrigé du baccalauréat S Amérique du Nord 1er juin 2016





Previous PDF Next PDF



Sujet et corrigé du bac en mathématiques série S

https://www.freemaths.fr/annales-mathematiques/bac-s-mathematiques-amerique-du-nord-2016-specialite-corrige-exercice-2-fonctions-derivees-integrales.pdf



Corrigé du baccalauréat S Amérique du Nord 1er juin 2016

1 juin 2016 Un particulier veut faire fabriquer un récu- pérateur d'eau. Ce récupérateur d'eau est une cuve qui doit respecter le cahier des charges ...



1er juin 2016

1 juin 2016 Commun à tous les candidats. Un particulier veut faire fabriquer un récupéra- teur d'eau. Ce récupérateur d'eau est une cuve qui doit res-.



Guide de validation des méthodes danalyses

28 oct. 2015 laboratoire et / ou en inter-laboratoires en particulier (étape 3 et 3bis) ... NF T 90-210 : 2009 Qualité de l'eau – Protocole d'évaluation ...



6 points

1 juin 2016 Un particulier veut faire fabriquer un récupérateur d'eau. Ce récupérateur d'eau est une cuve qui doit respecter le.



Gérer les inondations par ruissellement pluvial

15 mai 2012 eaux de pluie ne peut pas faire face : l'eau submerge les routes et les ... Les dommages subis par les particuliers ont des répercussions ...



Réhabilitation améliorée après une prothèse totale de hanche

guise d'exercice envisagez d'autres options comme faire lors de la récupération



Évaluation environnementale Guide daide à la définition des

se veut être un outil d'aide à destination des services procédures environnementales (au titre de la loi sur l'eau de la dérogation à la protection ...



Exercices et solutions

7 mai 2010 3.18 Un jeune lecteur de Carpentras nous écrit pour nous faire part de ... En particulier les catalogues réels ... veut lui transmettre.



concevoir-et-construire-en-acier.pdf

Nous remercions pour leur relecture attentive et leurs corrections judicieuses : agence Dubosc et Landowski. Thierry Braine-Bonnaire



S Amérique du Nord juin 2016 - Meilleur en Maths

Un paticulier veut faire fabriquer un récupérateur d'eau Ce récupérateur d'eau est une cuve qui doit respecter le cahier des charges suivant : elle doit être située à deux mètres de sa maison ; la profondeur maximale doit être de deux mètres ; elle doit mesurer cinq métres de long ;



Sujet et corrigé du bac en mathématiques série S Spécialité

Un particulier veut faire fabriquer un récupérateur d’eau Ce récupérateur d’eau est une cuve qui doit respec-ter le cahier des charges suivant : • elle doit être située à deux mètres de sa maison; • la profondeur maximale doit être de deux mètres; • elle doit mesurer cinq mètres de long;

Comment installer un récupérateur d’eau ?

Lors de l’installation du récupérateur d’eau, choisissez plutôt une exposition au nord afin d‘éviter que l’eau ne chauffe trop. La cuve doit être maintenue fermée afin d’éviter la prolifération de larves. Elle doit également être vidée en hiver afin d’éviter que l’eau ne gèle et la brise.

Comment relier deux récupérateurs d’eau ?

De l’intérieur du récupérateur 1 vers l’extérieur, insérer le tuyau de raccordement et toujours le serrer avec une bague de l’intérieur. Faites passer le tuyau de raccordement à travers le trou dédié sur l’autre collecteur et serrez à l’intérieur.

Pourquoi s’équiper d’un récupérateur d’eau ?

Pourquoi s’équiper d’un récupérateur d’eau ? Pour arroser le jardin, on compte environ 250 l d’eau par mètre carré et par an. Ce chiffre ne tient pas compte du nettoyage des outils, des murets ou de la terrasse! Ce n’est pas un investissement très coûteux par rapport à votre facture d’eau annuelle.

Comment fonctionne un réseau de récupération d’eau?

Ce réseau, géré par un programmateur à pile, est doté d’un filtre, d’un réducteur de pression (facultatif, surtout dans le cas de raccordement à une cuve) et alimenté par un tuyau enterré depuis la maison et raccordé à la cuve de récupération d’eau. Des tuyaux microporeux sont répartis au pied des haies et dans les massifs fleuris.

Corrigé du baccalauréat S Amérique du Nord 1erjuin 2016

EXERCICE16 points

Commun a tous les candidats

Une entreprise fabrique des billes en bois sphériques grâceà deux machines de production A

et B. L"entreprise considère qu"une bille peut être vendue uniquement lorsque son diamètre est

compris entre 0,9 cm et 1,1 cm.

Les partiesA, BetCsont indépendantes.

PartieA

Une étude du fonctionnement des machines a permis d"établirles résultats suivants : •96% de la production journalière est vendable. •La machine A fournit 60% de la production journalière. •La proportion de billes vendables parmi la production de la machine A est 98%.

On choisit une bille au hasard dans la production d"un jour donné. On définit les évènements

suivants : A: "la bille a été fabriquée par la machine A»; B: "la bille a été fabriquée par la machine B»;

V: "la bille est vendable».

1.Déterminer la probabilité que la bille choisie soit vendable et provienne de la machine A.

Solution:On peut construire un arbre pour illustrer la situation :

D"après l"énoncé on aP(V)=0,96

P(A)=0,6 etPA(V)=0,98

Puis on complète une partie de

l"arbre les données en bleu sont acquises après la question 2?? A 0,6 ?V0,98 ?V0,02 ?B0,4 ?V—->0,3720,93 ?V0,07On chercheP(A∩V)

P(A∩V)=P(A)×PA(V)=0,588

2.Justifier queP(B∩V)=0,372 et en déduire la probabilité que la bille choisie soit vendable

sachant qu"elle provient de la machine B. Solution:AetBforment une partition de l"univers donc d"après les probabilités to- tales donc on aP(V)=P(A∩V)+P(B∩V)=0,96

On en déduit que

P(B∩V)=0,96-P(A∩V)=0,372.

PuisPB(V)=P(B∩V)

P(B)=0,3720,4=0,93.

La probabilité que la bille choisie soit vendable sachant qu"elle provient dela machine

B est égale à 0,93.

3.Un technicien affirme que 70% des billes non vendables proviennent de la machine B.

A-t-il raison?

Solution:On cherchePV(B)

P

V(B)=P?

B∩

V? P?V? =0,0281-0,96=0,7. Doncle technicien a raison

PartieB

Dans cette partie, on s"intéresse au diamètre, exprimé en cm, des billes produites par les ma-

chines A et B.

1.Une étude statistique conduit à modéliser le diamètre d"unebille prélevée au hasard dans

la production de la machine B par une variablealéatoireXqui suit une loi normale d"espé- ranceμ=1 et d"écart-typeσ=0,055. Vérifier que la probabilité qu"une bille produite par la machine B soit vendable est bien celle trouvée dans la partie A, au centième près.

Solution:On cherche

P(0,9?X?1,1)≈0,93. Cette valeur correspond bien à PB(V)

2.De la même façon, le diamètre d"une bille prélevée au hasard dans la production de la ma-

μ=1 et d"écart-typeσ?,σ?étant un réel strictement positif. Sachant queP(0,9?Y?1,1)=0,98, déterminer une valeur approchée au millième deσ?.

Solution:Y?→N?1 ;σ?2?=?Y-1

σ??→N?0 ; 12?

SoitZ=Y-1

σ?alors 0,9?Y?1,1??-0,1σ??Z?0,1σ?

P(0,9?Y?1,1)=0,98??P?

-0,1

σ??Z?0,1σ??

=0,98??P?

Z?0,1σ??

=0,99 d"après la calculatrice on trouve 0,1 σ?≈2,326 . On en déduit queσ?≈0,043

PartieC

Les billes vendables passent ensuite dans une machine qui les teinte de manière aléa-

toire et équiprobable en blanc, noir, bleu, jaune ou rouge. Après avoir été mélangées,

les billes sont conditionnées en sachets. La quantité produite est suffisamment impor- tante pour que le remplissage d"un sachet puisse êtreassimilé àun tirage successif avec remise de billes dans la production journalière. Une étude de consommation montre que les enfants sont particulièrement attirés par les billes de couleur noire.

1.Dans cette question seulement, les sachets sont tous composés de 40 billes.

contienne exactement 10 billes noires. On arrondira le résultat à 10-3. Solution:La probabilité qu"une bille tirée au hasard dans la production journa- lière estp=1

5=0,2 car les 5 couleurs sont équiprobables.

Page 2

On répète 40 fois de manières indépendantes une expérience n"ayant que deux issues : bille noire ou non dont la probabilité du succès estp=0,2. SoitXla variable aléatoire comptant le nombre de billes noires dans le sac alors

X?→B(40 ; 0,2)

On cherche

P(X=10)=?4010?

×0,210×0,830≈0,107

Page 3

b.Dans un sachet de 40 billes, on a compté 12 billes noires. Ce constat permet-il de remettre en cause le réglage de la machine qui teinte les billes? Solution:On cherche si la fréquence observée appartient à l"intervalle de fluc- tuation asymptotique au seuil de 95% On se trouve bien dans les conditions d"application puisquen=40?30 np=8?5 etn(1-p)=32?5 L"intervalle de fluctuation asymptotique seuil de 95% est I=? p-1,96? p(1-p)?n;p+1,96? p(1-p)?n?

0,2-1,96?

0,16?40; 0,2+1,96?

0,16?100?

≈[0,076 ; 0,324] La fréquence observée de lancers à droite estf=12

40=0,3?I,

il n"y a donc pas de raison de douter du réglage de la machine qui teinte les billes.

2.Si l"entreprise souhaite que la probabilité d"obtenir au moins une bille noire dans un sa-

chet soit supérieure ou égale à 99%, quel nombre minimal de billes chaque sachet doit-il contenir pour atteindre cet objectif? Solution:Pour un sac contenantnbilles, la probabilité qu"au moins une soit noire est

P(X?1)=1-P(X=0)=1-?n

0?

×0,20×0,8n=1-0,8n

On doit donc résoudre 1-0,8n?0,99??0,8n?0,01?nln(0,8)?ln(0,01)??n? ln(0,01) ln(0,8) or ln(0,01) ln(0,8)≈20,6 L"entreprise doit donc mettre au minimum 21 billes dans chaque sac pour atteindre l"objectif.

Page 4

EXERCICE26 points

Commun à tous les candidats

Un particulier veut faire fabriquer un récu-

pérateur d"eau.

Ce récupérateur d"eau est une cuve qui doit

respecter le cahier des charges suivant : •elle doit être située à deux mètres desa maison; •la profondeur maximale doit être dedeux mètres;

•elledoitmesurercinqmètresdelong;

Cette cuve est schématisée ci-contre.

2 m5 m

La partie incurvée est modélisée par la courbeCfde la fonctionfsur l"intervalle [2 ; 2e] définie

par : f(x)=xln?x 2? -x+2. LacourbeCfestreprésentée ci-dessous dansunrepèreorthonorméd"unité1metconstitue une vue de profil de la cuve. On considère les points A(2; 2), I(2; 0) et B(2e; 2).

1 2 3 4 5 61

2

Terrain

Cuve

Terrain

Cf ??ABT I D

PartieA

L"objectif de cette partie est d"évaluer le volume de la cuve.

1.Justifier que les points B et I appartiennent à la courbeCfet que l"axe des abscisses est

tangent à la courbeCfau point I.

Solution:f(xB)=f(2e)=2e×ln?2e

2? -2e+2=2e-2e+2=2=yBdoncB?Cf f(xI)=f(2)=2×ln?22? -2+2=0=yIdoncI?Cf festdérivablesur[2; 2e]comme produitetsomme defonctionsdérivablessur [2; 2e] f=uv-u+2=?f?=u?v+uv?-u?avec???u(x)=x v(x)=ln?x 2? =??????u ?(x)=1 v ?(x)=1 2 x 2=1x ?x?[2 ; 2e] ,f?(x)=ln?x 2? et on af?(2)=0 donc la tangente àCfest horizontale enI

Page 5

L"axe des abscisses est tangent à la courbeCfau pointI.

2.On noteTla tangente à la courbeCfau point B, et D le point d"intersection de la droite

Tavec l"axe des abscisses.

a.Déterminer une équation de la droiteTet en déduire les coordonnées de D. Solution:T:y=f?(2e)(x-2e)+f(2e) orf?(2e)=1 etf(2e)=2

On a donc

T:y=x+2-2eet on en déduitD(2e-2 ; 0)

b.On appelleSl"aire du domaine délimité par la courbeCf, les droites d"équationsy=

2,x=2 etx=2e.

Speut être encadrée par l"aire du triangleABIet celle du trapèzeAIDB. Quel encadrement du volume de la cuve peut-on en déduire?

Solution:AABI=1

2×AB×AI=(2e-2)m2

A

AIDB=(AB+ID)×AI

2=(4e-6)m2

La longueur de la cuve étant de 5m, on en déduit

10e-10?V?20e-30

Autrement ditle volume de la cuve est compris entre 17,183m3et 24,366m3

3. a.Montrer que, sur l"intervalle [2; 2e], la fonctionGdéfinie par

G(x)=x2

2ln?x2?

-x24 est une primitive de la fonctiongdéfinie parg(x)=xln?x 2? Solution:Gest dérivable sur [2 ; 2e] comme produit et somme de fonctionsdé- rivables sur [2 ; 2e]

G=uv-1

2u=?f?=u?v+uv?-12u?avec?????u(x)=x22

v(x)=ln?x 2? ?u ?(x)=x v ?(x)=1 2 x 2=1x ?x?[2 ; 2e] ,G?(x)=xln?x 2? +x22×1x-12x=xln?x2? =g(x). Donc Gest bien une primitive de la fonctiongsur [2 ; 2e] b.En déduire une primitiveFde la fonctionfsur l"intervalle [2; 2e].

Solution:f(x)=g(x)-x+2

donc

F(x)=G(x)-x22+2x=x22ln?x2?

-3x24+2xest primitive defsur [2 ; 2e]

Page 6

c.Déterminer la valeur exacte de l"aireSet en déduire une valeur approchée du volume

Vde la cuve au m3près.

Solution:

S=? 2e 2 (2-f(x))dx=?

2x-F(x)?

2e

2=(4(e)F(2e))-(4-F(2))=(e2)-

(3) =e2-3

V=5S≈22m3

PartieB

Pour tout réelxcompris entre 2 et 2e, on note

v(x) le volume d"eau, exprimé en m3, se trou- vant dans la cuve lorsque la hauteur d"eau dans la cuve est égale àf(x).

On admet que, pour tout réelxde l"intervalle

[2; 2e], v(x)=5?x2

2ln?x2?

-2xln?x2? -x24+2x-3? .012345xf(x) 0123

1.Quel volume d"eau, au m3près, y a-t-il dans la cuve lorsque la hauteur d"eau dans la cuve

est de un mètre?

Solution:on cherchex0tel quef(x0)=1

On sait qu"il existe un uniquex0vérifiant cette équation carfest continue et stricte- ment croissante sur [2 ; 2e] à valeurs dans [0 ; 1] donc d"aprèsle théorème des valeurs intermédiaires,x0existe et est unique.

Par balayage on ax0≈4,311

v(4,311)≈7m3

2.On rappelle queVest le volume total de la cuve,fest la fonction définie en début d"exer-

cice etvla fonction définie dans la partie B.

On considère l"algorithme

ci-contre.

Interpréter le résultat que

cet algorithme permet d"afficher.

Variables :aest un réel

best un réel

Traitement :aprend la valeur 2

bprend la valeur 2 e

Tant quev(b)-v(a)>10-3faire :

cprend la valeur (a+b)/2

Siv(c) aprend la valeur c Sinon bprend la valeurc

Fin Si

Fin Tant que

Sortie : Afficherf(c)

Solution:

L"algorithme permet d"afficher la hauteur d"eau dans la cuvecorrespondant à 10-3m3près àquotesdbs_dbs26.pdfusesText_32

[PDF] pertinence d'une page web spé maths corrigé

[PDF] on considère une pyramide régulière sabcd de sommet s

[PDF] les types de serveurs

[PDF] qu'est ce qu'un poste client

[PDF] extrait texte autobiographique

[PDF] un institut effectue un sondage pour connaitre

[PDF] marche aléatoire terminale s

[PDF] soustraction matrice

[PDF] matrice puissance 2

[PDF] matrice nulle

[PDF] tableau entrée sortie exercice corrigé

[PDF] matrice nilpotente exemple

[PDF] matrice nilpotente propriété

[PDF] on ne badine pas avec l'amour

[PDF] cours graphes tes pdf