[PDF] Chapitre 2 1 2.4. Produits matriciels





Previous PDF Next PDF



les matrices sur Exo7

Dans le calcul matriciel la matrice nulle joue le rôle du nombre 0 pour les réels. 1.3. Addition de matrices. Définition 3 (Somme de deux matrices).



Matrices reloaded : inversion de matrices

23 mars 2011 Pour les matrices la matrice nulle est loin d'être la seule à poser problème. 1 Inversion de matrices. Définition 1. Une matrice carrée M ? Mn ...



Généralités sur les matrices

Matrices particulières. Matrice nulle : tous ses éléments a. 0. Matrice carrée d'ordre n : nombre de lignes = nombre de colonnes = 



Matrices inversibles

La matrice A =.. 0 0 0. 1 2 3. 4 5 6.. n'est pas la matrice nulle mais elle n'est pas inversible pour autant : quelle que soit la matrice par 





Travaux dirigés avec SAGE (partie III)

2.2.4 Inverse et puissances d'une matrice symbolique . La matrice identité s'obtient avec identity matrix la matrice nulle avec zero matrix



CORRECTION DS 5 Version A Questions de cours 1 Propriétés

Donc la seule matrice nilpotente et diagonale est la matrice nulle. L'ensemble des matrices symétriques et nilpotentes se ré- duit donc à l'ensemble des 



MAT 1200: Introduction à lalgèbre linéaire

Vecteur colonne Vecteur ligne



Chapitre 2 1 2.4. Produits matriciels

Cette définition peut être étendue `a n'importe quel matrice n × n o`u n il y a des diviseurs de O: si un produit de deux matrices est nul.



CALCUL MATRICIEL 1 Définitions et Notations 2 Opérations sur les

colonne `a n éléments. On appelle matrice nulle la matrice dont tous les coefficients sont nuls. On la note 0nm. Exercice 1. 1/ Expliciter les matrices.



Exo7 - Cours de mathématiques

• La matrice (de taille n p) dont tous les coef?cients sont des zéros est appelée la matrice nulle et est notée 0np ou plus simplement 0 Dans le calcul matriciel la matrice nulle joue le rôle du nombre 0 pour les réels



Exo7 - Cours de mathématiques

La matrice A s’écrit également sous la forme A = aij avec in=1 et j =1 p Une matrice ayant n lignes et p colonnes est appelée matrice (np) ou np× Définition 2 Le couple (np) est appelé dimension de la matrice Définitions 3 Une matrice de dimension (n1) est une matrice colonne Une matrice de dimension (1 p) est une matrice ligne



Cours de mathématiques MPSI

Matrices particulières: – Matrice nulle: la matrice nulle à n lignes et p colonnes est la matrice de Mnp(K) dont tous les coef?cients sont nuls celle-ci est notée Onp Lorsque p ?n la matrice Onn est notée simplement On c’est la matrice nulle de Mn(K)



SUR LES MATRICES A TRACE NULLE ET APPLICATIONS

La deuxième s'intéresse à l'application de ces matrices aux différents domaines que se soit en mathématiques tels que problèmes d'approximation par les matrices à trace nulle ou en physique telles que les équations de Pauli Dirac etc et le tenseur de Maxwell



Table des matières - AlloSchool

Dé nitions 1 3 (Matrice nulle - Matrice opposée) (i) On appelle matrice nulle et on note 0 np (ou 0 s'il 'yn asp d'ambiguïté) la matrice dont tous les e cientsoc sont nuls (ii) On appelle matrice opposée de A2M n;p(K) la matrice 1 A notée A Exemple 1 7 Soient A= 1 2 1 2 1 1;1 0 et B= 3 0 3 2 1 4 Déterminer 2A B Attention



Searches related to matrice nulle PDF

o outesT les matrices ne sont pas inversibles : par exemple la matrice nulle ne l'est pas puisque pour toute matrice B2M n(K) 0B= 0 6=I n Propriétés de l'inverse 1 Soit A2M n(K) inversible alors A 1 est aussi inversible et (A 1) 1 = A 2 Soient A;B2M n(K)inversiblesalors ABestinversibleet (AB) 1 = B 1A 1 3 Soit A 2M

Quel est le rôle de la matrice nulle dans le calcul matriciel?

La matrice (de taillenp) dont tous les coef?cients sont des zéros est appelée lamatrice nulleet est notée0n,pou plus simplement 0. Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels. 1.3. Addition de matrices Dé?nition 3(Somme de deux matrices).

Comment calculer la matrice?

On définit la matrice ?A comme matrice dont tous les coefficients sont multipliés par ? : ?A=?????aij. ?Aest aussi de dimension ()np, . Exemple 2 Soient et 23 42 10 ?? ?? =?? ?? ??

Comment calculer la dimension d'une matrice?

comme matrice dont tous les coefficients sont multipliés par ? : ?A=?????aij. ?Aest aussi de dimension ()np, . Exemple 2 Soient et 23 42 10 ?? ?? =?? ?? ??

Comment calculer le déterminant d’une matrice carrée?

Ainsi, la définition de la notion de déterminant d’une matrice carrée est étroitement liée à la définition du déterminant d’un système de vecteurs : det()A=det(vv12, , ,vn) GGG … On note alors () 11 1 1

Chapitre 2

1 2.4. Produits matriciels

1.1 Produit de matrices carr´ees

On a l"habitude de faire desproduits de nombre;

Par exemple

2×3 = 6

et on est habitu´e aux propri´et´s suivantes•il n"y a pas de diviseur deO: si un produit de deux nombres est nul

c"est que l"un de ces deux nombres est nul•le produit de deux nombres est commutatif:

2×3 = 3×2

et plus generalement pour tous nombresbeta a×b=b×a On va g´en´eraliser le produit de nombre auproduit des tableaux de nombres, c"est `a-dire au produit dematrices. Si

B=?b1b2

b 3b4? ,A=?a1a2 a 3a4? sont deux matrices carr´ees de taille 2 (avec deux lignes et deux colonnes) on d´efinit b

3×a1+b4×a3b3×a2+b4×a4?

B×Aest aussi une matrice de taille 2.

Par exemple, si

B=?6 7

8 9? ,A=?1 2 3 5? alors

B×A=?6×1 + 7×3 6×2 + 7×5

8×1 + 9×3 8×2 + 9×5?

=?27 47

35 61?1

Pour les d´ebutants on dispose le calcul ainsi

1 2 3 5

6 7 27 47

8 9 35 61

Cette d´efinition peut ˆetre ´etendue `a n"importe quel matricen×no`un est un entier naturel (1,2,...,819...): `a la position d"indicei,jdeB×A on place le produit de lai-`eme ligne deBpar laj-`eme colonne deA. Le produit des matrices a des propri´et´es ´etranges par rapport au produit de nombres•il y a des diviseurs deO: si un produit de deux matrices est nul (toutes les composantes sont nulles) il peut arriver qu"aucune des deux matrices ne soit nulle.

Par exemple SiB=?1-2

-2 4? etA=?2 4 1 2? ,2 4 1 2

1-2 0 0

-2 4 0 0 autrement dit

B×A=?1×2 +-2×1 1×4 +-2×2

-2×2 + 4×1-2×4 + 4×2? =?0 0

0 0?•le produit de deux matrices n"est pas toujours commutatif:

A×B?=B×A

. Par exemple si comme tout `a l"heureA=?2 4 1 2? etB=?1-2 -2 4?1-2 -2 4

2 4-6 12

1 2-3 62

autrement dit

A×B=?2×1 + 4× -2 2× -2 + 4×4

1×1 + 2× -2 1× -2 + 2×4?

=?-6 12 -3 6? ?=B×A=?0 0 0 0? Une premi`ere application du produit de matricesOn se donne un graphe oreint´e c"est `a dire des points num´erot´es avec des fl`eches entre eux. Par exempleFigure 1:Grapheet on construit la matrice d"adjacence du graphe

•on met un 1 `a la placei,js"il y a une fl`eche partant deiet allant `aj•on met un 0 `a la placei,js"il n"y a pas de fl`eche partant deiet allant

`aj

Dans notre exemple:A=?

????0 1 1 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0?

????3

On peut faire le produitA2=A×A0 1 1 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

0 1 1 0 0 0 0 0 2 1

0 0 0 1 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

autrement ditA 2=? ????0 0 0 2 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0?

La matriceA2compte le nombre de chemins de longueur 2 entreietj!! De mˆeme la matriceA3=A×A2compte le nombre de chemins de longueur 3 entreietj!!0 0 0 2 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 04

Autrement dit

A 3=? ????0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0?

Il y a un seul chemin de longueur 3, entre 1et 4

1.2 Composition des applications

Mais c"est pour ´etudier la composition des applications lin´eaires que la mul- tiplication des matrices va ˆetre la plus utile. On commence par rappeler le concept de la composition de deux appli- cations. La composition dey= sin(x) =f(x) avec la fonctionz= cos(y) =

g(y) est la fonctionz= cos(sin(x)) = (g◦f)(x).Figure 2:composition de fonctionsOn peut composer de la mˆeme mani`ere les applications lin´eaires. Re-

tournons `a l"exemple du d´ebut de la section 2.1. La positionx=?x1 x 2? du bateau est donn´ee par une position cod´eey=?y1 y 2? . Le code est donn´e par l"application lin´eaire y=Ax, A=?1 2 3 5? .5 On avait oubli´e un d´etail : la position du bateau est transmise `a un central `a Paris, et est cod´ee `a nouveau par l"application z=By, B=?6 7 8 9? La position du bateau re¸cue `a Paris est donn´ee par la formule z=B(Ax),

comme ´etant la composition dey=Axavecz=By.Figure 3:composition d"applications lin´eairesEst-ce que l"application compos´ee est lin´eaire, et si oui quelle est sa

matrice ? Nous allons aborder cette question cruciale : (a) en utilisant la force brutale, (b) en faisant un peu de th´eorie. (a) On ´ecrit les formules composantes par composante, (1) ?z1= 6y1+ 7y2, z

2= 8y1+ 9y2,(2)?y1=x1+ 2x2,

y

2= 3x1+ 5x2,

puis on substitue dans (1) les formules donn´ees pour lesyidans (2), ce qui donne z

1= 6(x1+ 2x2) + 7(3x1+ 5x2) = (6·1 + 7·3)x1+ (6·2 + 7·5)x2

= 27x1+ 47x2, z

2= 8(x1+ 2x2) + 9(3x1+ 5x2) = (8·1 + 9·3)x1+ (8·2 + 9·5)x2

= 35x1+ 61x2,6 ce qui montre que la compos´ee est bien lin´eaire et a pour matrice

BA=?6·1 + 7·3 6·2 + 7·5

8·1 + 9·3 8·2 + 9·5?

=?27 47

35 61?

(b) On utilise la caract´erisation des applications lin´eaires (section 2.1) pour prouver que l"applicationT(x) =B(Ax) est lin´eaire. On a :

T(v+w) =B(A(v+w)) =B(Av+Aw)

=B(Av) +B(Aw) =T(v) +T(w)

T(kv) =B(A(kv)) =B(kAv)

=kB(Av) =kT(v). Maintegnt que l"on sait queTest lin´eaire, il nous suffit pour trouver sa matrice de calculerT(e1) etT(e2), de sorte que la matrice deTest la matrice?T(e1)T(e2)?.

On a :

T(e1) =B(Ae1) =B(de la premi`ere colonne de A)

=?6 7 8 9?? 1 3? =?27 35?

T(e2) =B(Ae2) =B(de la deuxi`eme colonne de A)

=?6 7 8 9?? 2 5? =?47 61?
ce qui fait que la matrice deTest ´egale `a

T(e1)T(e2)

=?27 47

35 61?

Bien entendu, le r´esultat est le mˆeme que celui obtenu en (a) et on retrouve la matriceBA. Le produitBAest donc la matrice de l"applicationT(x) =B(Ax). Cela veut dire que ?x?IR2, T(x) =B(Ax) = (BA)x. On consid`ere maintenant le cas de matrices non n´ecessairement carr´ees. SoientBune matrice de taillen×petAune matrice de taillep×m. De nouveau, l"application compos´eez=B(Ax) est lin´eaire (la justi- fication donn´ee en b) fonctionne de la mˆeme fa¸con ici). La matrice de7

Figure 4:Vers le cas g´en´erall"applicationz=B(Ax) est leproduitde la matriceBpar la matriceA, et

est not´eBA. Cette matrice est de taillen×m. La matriceBAest celle d"une application lin´eaire de IRmdans IRnet est donc de taillen×m, et on a z=B(Ax) = (BA)x. Dans la d´efinition du produitBA, le nombre de colonnes deBest ´egal au nombre de lignes deA. Que se passe-t-il quand ces deux nombres sont diff´erents ? Supposons

queBsoit de taillen×petAde tailleq×mavecp?=q.Figure 5:Compatibilit´e colonnes/lignesDans ce cas, les applicationsz=Byety=Axne peuvent pas ˆetre

compos´ees car le co-domaine dey=Axest diff´erent du domaine dez= By. Autrement dit, la sortie de l"applicationy=Axn"est pas une entr´ee8 raisonnable pour l"applicationz=By. Dans ce cas, la produitBAn"est pas d´efini.Produit de matrices a) SoientBune matrice de taillen×petAune matrice de tailleq×m. Le produitBAest d´efini si et seulement sip=q. b) SoientBune matrice de taillen×petAune matrice de taillep×m. Alors le produitBA, de taillen×mest d´efini comme ´etant la matrice de l"application lin´eaire compos´eeT(x) =B(Ax) =BAx, pour toutx?IRm.

Dans ce cas, le produitBAest une matrice de taillen×m.Cette d´efinition ne semble pas donner de moyens concrets pour calculer

num´eriquement le produit de deux matrices. Pourtant ce moyen concret suit directement des d´efinitions.

SoientBune matrice de taillen×petAune matrice de taillep×m.´Etudions les colonnes de la matrice produitBA:

(i`emecolonne deBA) = (BA)ei =B(Aei) =B(i`emecolonne deA). En notantv1,v2,···,vmles colonnes deA, on a alors BA=B? v

1v2···vm

Bv

1Bv2···Bvm

?Les colonnes d"une matrice produit SoientBune matrice de taillen×petAune matrice de taillep×m. On notev1,v2,···,vmles colonnes deA. alors le prduitBAest d´efini par BA=B? v

1v2···vm

Bv

1Bv2···Bvm

Pour d´eterminerBAil suffit d"effectuer la multiplication deBpar chaque colonne deAet de recombiner en matrice l"ensemble des vecteurs ainsi d´etermin´es.C"est comme cela qu"on a calcul´e en (b) de l"exemple plus haut le produit

BA=?6 7

8 9?? 1 2 3 5? =?27 47

35 61?

.9 On a vu dans la premi`ere section que la multiplication des matrices est une op´eration non-commutative, ce qui n"est pas une surprise. En effet, la

composition des fonctions n"est pas une op´eration commutative.La multiplication des matrices n"est pas commutative

SoientBune matrice de taillen×petAune matrice de taillep×n. Alors ABest une matrice de taillep×petBAde taillen×n. Dans le cas o`u p=n, on peut comparer les produitsABetBA. En g´en´eral,AB?=BA. N´eanmoins, il arrive parfois queAB=BA; dans

ce cas, on dit que les matricescommutent.Il est utile d"avoir une formule analytique pour la composanteijdu

produitBA. On rappelle que BA=B? v

1v2···vm

Bv

1Bv2···Bvm

le coefficientijdu produitBAest laii`emecomposante du vecteurBvj, qui est le produit vecteur ligne vecteur colonne de laii`emeligne deBpar laji`eme colonne deA. Si on note [BA]ijle coefficient `a laii`emeligne et laji`emecolonne de la matrice produitBA, on a alors k=1b ikakj.10

Les coefficients de la matrice produit

SoientBune matrice de taillen×petAune matrice de taillep×m. Le coefficient ijdu produitBAest le produit de laii`emeligne deBpar laji`emecolonne deA.

La matrice

BA=?

11b12···b1p

b

21b22···b2p............

b i1bi2···bip............ b n1bn2···bnp? ???a

11a12···a1j···a1m

a a p1ap2···apj···apm? est la matrice de taillen×mdont le coefficient `a laii`emeligne et laji`emecolonne est donn´e par la formule k=1b ikakj.Exemple 1 6 7 8 9?? 1 2 3 5? =?6·1 + 7·3 6·2 + 7·5

8·1 + 9·3 8·2 + 9·5?

=?27 47

35 61?

Au fait, o`u a-t-on d´ej`a vu ces calculs ?

1.3 Calculs alg´ebriques avec les matrices

Nous allons d´ecrire dans ce qui suit les prinicipes du calcul alg´ebrique des matrices. •SoitAune matrice carr´ee de taillen×n, inversible. La matriceA

multipli´ee par la matriceA-1repr´esente l"application identit´e.Multiplication par l"inverse

Etant donn´eeAune matrice inversible carr´ee de taillen×n, on a AA -1=A-1A= In.•Composer l"application identit´e par une application lin´eaire des deux cot´es, laisse invariante l"application lin´eaire consid´er´ee.11

Multiplication par la matrice identit´e

Etant donn´eeAune matrice carr´ee de taillen×n, on a AIn= InA=A.•SoitAune matricen×p,Bune matricep×q,Cune matriceq×m.

Quelle est la relation entre (AB)CetA(BC) ?

Une mani`ere de r´efl´echir `a ce probl`eme (mˆeme si ce n"est pas la plus ´el´egante), consiste `a´ecrireC`a l"aide de ses vecteurs colonnes,C=?v1v2···vn?.

On a alors

(AB)C= (AB)?v1v2···vn? ?(AB)v1(AB)v2···(AB)vn?, tandis-que

A(BC) =A?Bv1Bv2···Bvn?

?A(Bv1)A(Bv2)···A(Bvn)?, Puisque (AB)vi=A(Bvi) par d´efinition du produit matriciel, on en d´eduit que (AB)C=A(BC).Associativit´e du produit matriciel

On a toujours

(AB)C=A(BC),

et on ´ecriraABCau lieu deA(BC) = (AB)C.Une d´emonstration plus conceptuelle repose sur l"associativit´e de la com-

position des applications. Les deux application lin´eaires

T(x) = ((AB)C)x, L(x) = (A(BC))x

sont identiques, car la d´efinition de la multiplication des matrices montre que

T(x) = ((AB)C)x= (AB)(Cx) =A(B(Cx)),

tandis-que

L(x) = (A(BC))x=A((BC)x)) =A(B(Cx)).12

Figure 6:Associativit´e du produit matricielLes domaines et co-domaines respectifs des applications lin´eaires d´efinies

par les matricesA,B,C,BC,AB,A(BC) et (AB)Csont d´ecrits dans la figure ci-dessous. •SoientAetBdeux matrices carr´ees de taillen×n. On supposeAet Binversibles. Est-ce que le produitBAest encore inversible ? Pour trouver la r´eciproque de l"appication lin´eaire y=BAx, on va r´esoudre l"´equation enxen deux temps. On commence par multiplier `a gauche les deux membres de cette ´equations parB-1: B -1y=B-1BAx= InAx=Ax.quotesdbs_dbs6.pdfusesText_11
[PDF] tableau entrée sortie exercice corrigé

[PDF] matrice nilpotente exemple

[PDF] matrice nilpotente propriété

[PDF] on ne badine pas avec l'amour

[PDF] cours graphes tes pdf

[PDF] exercice matrice spe maths es

[PDF] cours graphes probabilistes

[PDF] le mystère de la chambre jaune questionnaire lecture

[PDF] le mystère de la chambre jaune reponse

[PDF] le mystère de la chambre jaune audio

[PDF] qu'est qu'un diviseur

[PDF] exemple de diviseur

[PDF] qu est ce qu un multiple de 9

[PDF] qu est ce qu un divisible

[PDF] qu'est ce qu'un diviseur de 6