[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



Première générale - Suites arithmétiques et géométriques - Exercices

En déduire le sens de variation de (un). 3/4. Suites arithmétiques et géométriques – Exercices – Devoirs. Mathématiques Première générale - Année scolaire 2021/ 



suites arithmetiques et geometriques exercices corriges

Exercice n°3. (u ) est une suite arithmétique de raison r. n. 1) On sait que u et.



SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES. Fiche d'exercices. Première S. Exercice 1. Pour les questions suivantes préciser si la suite ( )n u est arithmétique 



Première S - Suites arithmétiques et géométriques - ChingAtome

Déterminer les quatre premiers termes de la suite. ( vn. ) géométrique de premier terme 3 et de raison ?. 3. 2 . Exercice 5123. Première S - Suites 



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Suite géométrique - Premi`ere S ES STI - Exercices Corrigés en

On consid`ere les suites u et v telles que u0 = 1 et pour tout entier naturel n un+1 = 1. 2 un + 3 et vn = un ? 6. 1?) La suite (un) est-elle arithmétique ?



SUITES ARITHMÉTIQUES et SUITES GÉOMÉTRIQUES : exercices

2 ) On considère la suite des nombres entiers naturels pairs ( v0=0 v1=2



Chapitre 2: Suites arithmétiques et suites géométriques

Exercice 2.4 : Calculer le cinquième terme le vingtième terme



SUITES Arithmétiques ET Géométriques – Feuille dexercices

4. Calculer la somme S' = . Exercice 4 : ( B) est une suite arithmétique. On sait que :  



Première Spécialité - Suites arithmétiques et géométriques et autres

Déterminer la valeur des 6 premiers termes de la suite. ( vn. ) . Exercice 7193. On considère la suite. ( un. ) arithmétique de premier terme 3 et de 

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

quotesdbs_dbs1.pdfusesText_1
[PDF] exercices suites arithmétiques et géométriques bac pro

[PDF] exercices suites premiere es corrigés

[PDF] exercices suites terminale es pdf

[PDF] exercices sur induction et auto induction

[PDF] exercices sur l adn seconde

[PDF] exercices sur l argumentation pdf

[PDF] exercices sur l'adn support de l'information génétique

[PDF] exercices sur l'argumentation pdf

[PDF] exercices sur l'électrisation

[PDF] exercices sur la structure de l'adn

[PDF] exercices sur les agents économiques

[PDF] exercices sur les alcools terminale pdf

[PDF] exercices sur les durées cm1 ? imprimer

[PDF] exercices sur les facteurs édaphiques

[PDF] exercices sur les forces en physique 3eme