[PDF] MATH Tle D OK 2 La présente annale destiné





Previous PDF Next PDF



Géométrie dans lespace - Lycée dAdultes

26 juin 2013 J. K. L. M. PAUL MILAN. 5. TERMINALE S. Page 6. 1 DROITES ET PLANS. On réitère cette opération pour la face gauche ADHE et la face du dessous ...



Géométrie dans lespace - Lycée dAdultes

29 mai 2016 a) 5CL = CD b) 6CL = CD c) 4DL = 3DC paul milan. 2. Terminale S. Page 3. exercices. Exercice 5. On considère le cube ABCDEFGH ci contre de côté ...



Terminale S Chapitre « Géométrie dans lespace » Terminale S Chapitre « Géométrie dans lespace »

Définition : Vecteur normal à un plan. On appelle vecteur normal à un plan un vecteur non nul orthogonal à tous les vecteurs du plan. Propriété : Un vecteur 



GEOMETRIE DANS LESPACE GEOMETRIE DANS LESPACE

alors Δ est parallèle aux droites d et d'. Page 6. 6 sur 8. Yvan Monka – Académie de Strasbourg – www.maths-et 



Géométrie dans lEspace Maths bac S

4. Droites de l'espace: a. Soient D une droite de vecteur directeur et D ' une droite de vecteur directeur ' 



Douine – Terminale S – Activités – Chapitre 6 – Géométrie dans l Douine – Terminale S – Activités – Chapitre 6 – Géométrie dans l

Leur intersection est alors une droite dont on peut déterminer la représentation paramétrique. Application 1. Dans un repère orthonormal de l'espace on 



Géométrie dans lespace en terminale S

17 janv. 2008 Géométrie dans l'espace en terminale S. Sommaire. Sujets ÉduSCOL. 15. Distance de ... Document PDF : http://www.debart.fr/pdf/geospace_terminale.



geometrie-dans-l-espace-resume-de-cours-1.pdf

. Soit H le projeté orthogonal du centre sur la droite . On pose : ; d. H d coupe S en deux points distincts est tangente à S en H ne coupe pas S.



COURS TERMINALE GÉOMÉTRIE DANS LESPACE

(6) Si deux plans sécants sont parallèle à une droite (d) leur intersection est parallèle à (d). (7) Un plan coupe deux plans parallèles suivant deux droites 



VECTEURS DROITES ET PLANS DE LESPACE

Tous les résultats établis en géométrie plane s'étendent à l'espace par l'adjonction d'une 3e coordonnée : Dans un repère (0;⃗ı⃗ȷ



Géométrie dans lespace - Lycée dAdultes

26 juin 2013 J. K. L. M. PAUL MILAN. 5. TERMINALE S. Page 6. 1 DROITES ET PLANS. On réitère cette opération pour la face gauche ADHE et la face du dessous ...



Terminale S Chapitre « Géométrie dans lespace »

Terminale S. Chapitre « Géométrie dans l'espace ». Page 4 sur 17. 3) L'orthogonalité dans l'espace. Définition : Vecteur normal à un plan.



Géométrie dans lespace

Géométrie dans l'espace. Olivier Lécluse. Terminale S. 1.0. Octobre 2013 vecteur de l'espace suivant trois vecteurs non coplanaires sensibilisent aux ...



GEOMETRIE DANS LESPACE

Deux droites de l'espace sont dites coplanaires lorsqu'elles sont incluses dans 6 sur 8. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



MATH Tle D OK 2

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans est dite géométrique s'il existe un réel tel que tout ??.



Géométrie vectorielle et analytique dans lespace cours

http://mathsfg.net.free.fr/terminale/TS2011/espace/espacegeometrievectorielleanalytiquecoursTS.pdf



Géométrie dans lespace en terminale S

17 janv. 2008 Géométrie dans l'espace en terminale S. Sommaire. Sujets ÉduSCOL ... Document PDF : http://www.debart.fr/pdf/geospace_terminale.pdf.



Géométrie dans lespace - Lycée dAdultes

29 mai 2016 a) 5CL = CD b) 6CL = CD c) 4DL = 3DC paul milan. 2. Terminale S. Page 3. exercices. Exercice 5. On considère le cube ABCDEFGH ci contre de côté ...



FicheBacS 11b Terminale S Géométrie dans lespace

a) Justifier que le point C(7 ; 3 ;?9) appartient au plan P. b) Montrer que le triangle ABC est un triangle rectangle isocèle en A. 4. Soit t un nombre réel 





[PDF] Géométrie dans lespace - Lycée dAdultes

26 jui 2013 · DERNIÈRE IMPRESSION LE 26 juin 2013 à 15:11 Géométrie dans l'espace Table des matières 1 Droites et plans 2 1 1 Perspectivecavalière



[PDF] Géométrie dans lespace - Lycée dAdultes

29 mai 2016 · Exercices 29 mai 2016 Géométrie dans l'espace Droites et plans Exercice 1 Soit un cube ABCDEFGH et un plan (IJK) tel que :



[PDF] Géométrie dans lespace

Géométrie dans l'espace Olivier Lécluse Terminale S 1 0 Octobre 2013 1 Droites et plans : Positions relatives



[PDF] Terminale S Chapitre « Géométrie dans lespace »

Déterminer le plan médiateur au segment [AB] Exercice 6 : Déterminer les coordonnées du projeté orthogonal du point ( ) 160 B



[PDF] GEOMETRIE DANS LESPACE - maths et tiques

1 sur 8 Yvan Monka – Académie de Strasbourg – www maths-et-tiques GEOMETRIE DANS L'ESPACE I Les solides usuels (rappels du collège)



[PDF] Géométrie dans lespace en terminale S

17 jan 2008 · Géométrie dans l'espace en terminale S Sommaire Sujets ÉduSCOL Document PDF : http://www debart fr/ pdf /geospace_terminale pdf



[PDF] FicheBacS 11b Terminale S Géométrie dans lespace - Logamathsfr

FicheBacS 11b Terminale S Géométrie dans l'espace Exercice 1 1°) Dans un repère orthonormé (O ;?i ?j ?k) de l'espace on considère les deux



[PDF] Cours de Terminale S Géométrie et probabilités

21 mai 2015 · Définition 1 Deux droites de l'espace sont dites orthogonales lorsque leurs parallèles respectives menées par un point quelconque de l'espace 



[PDF] VECTEURS DROITES ET PLANS DE LESPACE - Maths91fr

VECTEURS DROITES ET PLANS DE L'ESPACE Terminale Spé Maths ? Chapitre G-01 Table des matières I Positions relatives dans l'espace 2 1)



[PDF] geometrie-dans-l-espace-resume-de-cours-1pdf - AlloSchool

Géométrie dans l'espace EL KYAL MOHAMED L'espace est rapporté à un repère orthonormé direct oi j k ? Expressions analytiques :

:
1

BURKINA FASO

Unité - Progrès - Justice

MINISTERE

DE L'EDUCATION NATIONALE,

DE

L'ALPHABETISATION ET DE LA PROMOTION

DES

LANGUES NATIONALES

ANNALES

MATHÉMATIQUES

TERMINALE D

2

AUTEURS :

Dieudonné KOURAOGO IES

Victor T. BARRY IES

Jean Marc TIENDREBEOGO IES

Clément TRAORE IES

Bakary COMPAORE IES

Abdou KABORE CPES

Maquette et mise en page :

OUEDRAOGO Joseph

ISBN :

Tous droits réservés :

© Ministre de l'Éducation Nationale, de l'Alphabétisation

Et de la Promotion des Langues nationales

Edition :

Direction Générale de la Recherche en Éducation et de l'Innovation Pédagogique 3 4

AVANT-PROPOS

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans

son enseignement et le candidat au baccalauréat D de se préparer à l'épreuve de

mathématiques.

Cette annale comporte trois parties :

Première partie : résumé du cours par chapitre Deuxième partie : énoncés des épreuves du baccalauréat D Troisième partie : propositions de corrigés des épreuves. Les candidats ne tireront profit qu'en résolvant et trouvant par eux-mêmes les solutions sans

avoir recours aux corrigés. Les corrigés sont pour confirmer leurs justes réponses ou donner

d'autres pistes de résolution qui ne sont peut-être pas les leurs. Le succès résulte de l'effort et

de la méthode. Nous vous souhaitons du plaisir dans vos activités mathématiques et attendons vos critiques et suggestions pour des améliorations futures d'autres oeuvres.

Les auteurs

5 6

RAPPEL DE COURS

7

Chapitre : Les suites numériques

Objectifs :

· Mettre en oeuvre les énoncés admis sur les limites des suites ; · Connaître les limites et les comportements asymptotiques comparés des suites numériques.

1. Généralités sur les suites numériques

a) Définition

On appelle suite numérique, toute application

définie de ℕ (ou d'un sous ensemble de ℕ) vers ℝ. On la note ()∈ℕ (ou ()∈). b) Modes de détermination d'une suite

Une suite numérique peut être définie :

Soit par une formule explicite qui permet de calculer les termes en fonction de .

Exemples :

- Soit ()∈ℕ la suite définie par = 2 - 3. - Soit ()∈ℕ ∗ la suite définie par = Soit par la donnée d'un terme quelconque (en général son 1er terme) et d'une relation qui lie deux termes consécutifs (permettant de calculer un terme à partir du terme qui le précède).

Exemples :

- Soit ()∈ℕ la suite définie par = 3 - Soit ()∈ℕ ∗ la suite définie par = 4 + 5 , c) Sens de variation d'une suite Soit ()∈ℕ une suite numérique.

· Si pour tout

(resp. strictement croissante).

· Si pour tout

décroissante (resp. strictement décroissante).

· Si pour tout

∈ ℕ, = alors la suite ()∈ℕ est dite constante. d) Comparaisons sur les suites

Soient

()∈ℕ et ()∈ℕ deux suites numériques et 8 Si pour tout , ≥ (resp. > ) on dit que la suite () est supérieure () (resp. () est strictement supérieure à ()). Si pour tout () (resp. () est strictement inférieure à ()). On dit que la suite () est majorée s'il existe un réel ' tel que pour tout On dit que la suite () est minorée s'il existe un réel ( tel que pour tout Si la suite () est la fois minorée et majorée, on dit qu'elle bornée. Remarque : Une suite positive (resp. négative) est minorée par 0 (resp. majorée par 0).

2. Suites arithmétiques et suites géométriques

a) Suites arithmétiques

· Une suite

()∈ℕ est dite arithmétique s'il existe un réel ) tel que tout

Le réel

) s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : Si le 1er terme est alors pour tout - 1)). Pour tous entier et , (

· Soit

()∈ℕ est une suite arithmétique de raison ). Si ) > 0 alors la suite () est croissante. Si ) < 0 alors la suite () est décroissante. Si ) = 0 alors la suite () est constante.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

2. Si le 1er terme est alors la somme / des

1er termes est :

2. Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : + 1) ×(-+ -) 2. 9 b) Suites géométriques

· Une suite

()∈ℕ est dite géométrique s'il existe un réel 2 tel que tout = 2.

Le réel

2 s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : = 2. Si le 1er terme est alors pour tout = 2(). Pour tous entier et , ( = -2(-).

· Soit

()∈ℕ est une suite arithmétique de raison ). Si 2 > 1 alors la suite () est croissante. Si 0 < 2 < 1 alors la suite () est décroissante. Si 2 = 1 alors la suite () est constante. Si 2 < 0, () est une suite alternée

· Soit

()∈ℕ est une suite arithmétique de raison 2 et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

/= ×1 - 2

1 - 2.

Si le 1er terme est alors la somme / des

1er termes est :

/= ×1 - 2

1 - 2.

Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : /= -×1 - 2

1 - 2.

3. Convergence des suites numériques

a) Définition Soit ()∈ℕ une suite numérique. On dit que la suite () est convergent si elle admet une limite finie 3. On note lim→8= 3. On dit que la suite () est divergente si elle n'est pas convergente. On a lim→8= +∞ ou lim→8= -∞. b) Limite par comparaison Soit ()∈ℕ une suite numérique et S'il existe une suite () telle que pour tout , ≥ et lim→8= +∞ alors lim→8= +∞. 10 S'il existe un suite (:) telle que pour tout alors lim→8= -∞. S'il existe un réel 3 tel que pour tout lim→8:= lim→8= 3, alors lim→8= 3. Si pour tout Si pour tout c) Limite des suites monotones Soit ()∈ℕ une suite numérique. Si () est croissante et majorée alors () converge. Si () est décroissante et minorée alors () converge. Si () est monotone et bornée alors () converge. d) Convergence des suites arithmétiques et géométriques

· Convergence des suites arithmétiques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si ) = 0 alors la suite () est convergente et lim→8= . Si ) ≠ 0 alors la suite () est divergente et lim→8= +∞, ) > 0 lim →8= -∞, >? ) < 0

· Convergence des suites géométriques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si 2 = 1 alors la suite () est convergente et lim→8= Si |2| < 1 alors la suite () est convergente et lim→8= 0. Si 2 > 1 alors la suite () est divergente et lim→8= +∞, > 0 lim →8= -∞, >? < 0 e) Opérations sur les limites des suites Soit ()∈ℕ et ()∈ℕ deux suites numériques. Les propriétés sur les limites de la somme ( + ), du produit (× ) et du quotient @A BA), si ≠ 0; sont les mêmes que celles sur les limites des fonctions numériques. f) Limites des suites définies à l'aide d'une fonction

· Suite de type

= C( Soit C une fonction définie sur ℝ et () une suite définie par = C( Si C admet une limite en +∞ alors lim→8= limD→8C(E).

· Suite de type

= C() Soit C une fonction continue sur un intervalle de ℝ et () une suite numérique définie par = C().

Si la suite

() est convergente et de limite 3, alors 3 = C(3). 11

Chapitre : Courbes paramétrées

Objectifs :

· mettre en évidence et exploiter les périodicités et les symétries éventuelles, · dresser le tableau de variations des fonctions coordonnées x et y, · calculer les coordonnées (x'(t), y'(t)) du vecteur dérivé, · connaître l'interprétation cinématique du vecteur dérivé.

1. Notion de courbes paramétrées

a) Définition Le plan est rapporté à un repère orthonormal (O,F,GHIH) et I est un intervalle de ℝ. Soit

E et J deux fonctions de la variable réelle K.

A tout réel

quotesdbs_dbs43.pdfusesText_43
[PDF] organisation d une agence de publicité

[PDF] les activités d'une entreprise de communication

[PDF] l'organigramme de l'entreprise

[PDF] organigramme hiérarchique et fonctionnel

[PDF] organigramme gratuit

[PDF] organigramme d'une entreprise commerciale

[PDF] les differents types d'organigramme des entreprises

[PDF] organigramme entreprise pdf

[PDF] organigramme fonctionnel

[PDF] exemple organigramme fonctionnel

[PDF] rareté relative definition

[PDF] bien économique

[PDF] la valeur en économie

[PDF] programme politique d un parti pdf

[PDF] relative définition