[PDF] Nombres complexes Exercice 15. Soit z un





Previous PDF Next PDF



Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1 : On donne 0

NOMBRES COMPLEXES. Exercice 1 : On donne 0 un réel tel que : cos( 0) = 2. ?5 et sin( 0) = 1. ?5 . Calculer le module et l'argument de chacun des 



Nombres complexes

Exercice 15. Soit z un nombre complexe de module ? d'argument ?



NOMBRES COMPLEXES - EXERCICES CORRIGES ( ) ) ( ) ( ) ) ( )

6) Déterminer l'ensemble des points M d'affixe z vérifiant 1. 3 2 3 z i. ? +. = . Exercice n°12. Pour tout nombre complexe z on définit : ( ). ( ) ( ).



Terminale générale - Nombres complexes - Exercices

Déterminer l'ensemble C des points M d'affixe z tels que Z soit imaginaire pur. Exercice 14. Pour tout nombre complexe z différent de i on définit Z= z+3.



Terminale S - Nombres complexes Exercices corrigés

F. Laroche. Nombres Complexes corrigés http://laroche.lycee.free.fr. Terminale S. Nombres complexes. Exercices corrigés. 1. 1. Qcm 1.



exercices-corriges-nombres-complexes.pdf

EXERCICES CORRIGES. Exercice n°1. Pour tout nombre complexe z on définit : ( ) ... 1) Donner le module et un argument des trois complexes suivants :.



Exercices : nombre complexe - Calcul Corrigés en vidéo et le cours

e). 1 z. +. 1 z est-il réel ou imaginaire pur ? Justifier. Écrire un quotient sous forme algébrique. Écrire les nombres complexes suivants sous forme algébrique 



Nombres complexes Exercices corrigés (7C) )

Exercices corrigés (7C). Exercice 1 (Bac 2018 sn). Le plan complexe est muni d'un repère orthonormé (. ) O;ij . Pour tout nombre complexe z on pose :.



Exercices Corrigés Corps des nombres complexes Exercice 1 – 1

Exercice 1 –. 1) Qu'est ce que le conjugué d'un nombre complexe ? 2) Déterminer les nombres complexes z vérifiant : (1 + i)z - 1 + i = 0. 3) Préciser le 



Exercices corrigés sur le calcul des nombres complexes

Revenir exercice. La forme algébrique d'un nombre complexe est unique. C'est l'écriture sous la forme z = a +ib où a et b sont deux nombres réels. 1. z1 

Exo7

Nombres complexes

1 Forme cartésienne, forme polaire

Exercice 1Mettre sous la formea+ib(a;b2R) les nombres :

3+6i34i;1+i2i

2 +3+6i34i;2+5i1i+25i1+i: Écrire sous la formea+ibles nombres complexes suivants : 1.

Nombre de module 2 et d"ar gumentp=3.

2.

Nombre de module 3 et d"ar gumentp=8.

Calculer le module et l"argument deu=p6ip2

2 etv=1i. En déduire le module et l"argument dew=uv Déterminer le module et l"argument des nombres complexes : e eiaeteiq+e2iq: Exercice 5Calculer les racines carrées de 1;i;3+4i;86i;et 7+24i. 1.

Calculer les racines carrées de

1+ip2 . En déduire les valeurs de cos(p=8)et sin(p=8). 2.

Calculer les v aleursde cos (p=12)et sin(p=12).

1

Résoudre dansCles équations suivantes :

z

2+z+1=0 ;z2(1+2i)z+i1=0 ;z2p3zi=0 ;

z

2(514i)z2(5i+12) =0 ;z2(3+4i)z1+5i=0 ; 4z22z+1=0 ;

z

4+10z2+169=0 ;z4+2z2+4=0:

Exercice 8Calculer la sommeSn=1+z+z2++zn.

1.

Résoudre z3=1 et montrer que les racines s"écrivent 1,j,j2. Calculer 1+j+j2et en déduire les racines

de 1+z+z2=0. 2.

Résoudre zn=1 et montrer que les racines s"écrivent 1;e;:::;en1. En déduire les racines de 1+z+z2+

+zn1=0. Calculer, pourp2N, 1+ep+e2p++e(n1)p.

Trouver les racines cubiques de 22iet de 11+2i.

1. Soient z1,z2,z3trois nombres complexes distincts ayant le même cube.

Exprimerz2etz3en fonction dez1.

2. Donner ,sous forme polaire, les solutions dans Cde : z

6+(7i)z388i=0:

(Indication : poserZ=z3; calculer(9+i)2)

4 Géométrie

Exercice 12Déterminer l"ensemble des nombres complexesztels que : 1. z3z5 =1; 2. z3z5 =p2 2 Montrer que pouru;v2C, on aju+vj2+juvj2=2(juj2+jvj2):Donner une interprétation géométrique.

Soit(A0;A1;A2;A3;A4)un pentagone régulier. On noteOson centre et on choisit un repère orthonormé

(O;!u;!v)avec!u=!OA0, qui nous permet d"identifier le plan avec l"ensemble des nombres complexesC.A0 A 3 A 4A 1 A 2 O

1i1.Donner lesaffixesw0;:::;w4despointsA0;:::;A4. Montrerquewk=w1kpourk2f0;1;2;3;4g. Montrer

que 1+w1+w21+w31+w41=0. 2.

En déduire que cos (2p5

)est l"une des solutions de l"équation 4z2+2z1=0. En déduire la valeur de cos(2p5 3. On considère le point Bd"affixe1. Calculer la longueurBA2en fonction de sinp10 puis dep5 (on remarquera que sin p10 =cos2p5 4.

On cons idèrele point Id"affixei2

, le cercleCde centreIde rayon12 et enfin le pointJd"intersection de Cavec la demi-droite[BI). Calculer la longueurBIpuis la longueurBJ.

5.Application:Dessiner un pentagone régulier à la règle et au compas. Expliquer.

5 Trigonométrie

Exercice 15Soitzun nombre complexe de moduler, d"argumentq, et soitzson conjugué. Calculer(z+z)(z2+z

2):::(zn+z

n)en fonction deretq. En utilisant les nombres complexes, calculer cos5qet sin5qen fonction de cosqet sinq.

Exercice 17SoitZ[i] =fa+ib;a;b2Zg.

1. Montrer que si aetbsont dansZ[i]alorsa+betable sont aussi. 2.

T rouverles élements in versiblesde Z[i], c"est-à-dire les élémentsa2Z[i]tels qu"il existeb2Z[i]avec

ab=1. 3. Vérifier que quel que soit w2Cil existea2Z[i]tel quejwaj<1. 4.

Montrer qu"il e xistesur Z[i]une division euclidienne, c"est-à-dire que, quels que soientaetbdansZ[i]

il existeqetrdansZ[i]vérifiant : a=bq+ravecjrj2¯z2¯z2=z1¯z2jz2j2.Indication pourl"exer cice2 NIl faut bien connaître ses formules trigonométriques. En particulier si l"on connait cos(2q)ou sin(2q)on sait

calculer cosqet sinq.Indication pourl"exer cice3 NPassez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

e

iaeib=ei(a+b)eteia=eib=ei(ab):Indication pourl"exer cice4 NPour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

.Indication pourl"exer cice5 NPourz=a+ibon cherchew=a+ibtel que(a+ib)2=a+ib. Développez et indentifiez. Utilisez aussi que

jwj2=jzj.Indication pourl"exer cice6 NIl s"agit de calculer les racines carrées de 1+ip2 =eip4

de deux façons différentes.Indication pourl"exer cice7 NPour les équation du typeaz4+bz2+c=0, poserZ=z2.Indication pourl"exer cice8 NCalculer(1z)Sn.Indication pourl"exer cice12 NLe premier ensemble est une droite le second est un cercle.

Indication pour

l"exer cice

13 NPour l"interprétation géométrique cherchez le parallélogramme.

Indication pour

l"exer cice

15 NUtiliser la formule d"Euler pour faire apparaître des cosinus.

Indication pour

l"exer cice

16 NAppliquer deux fois la formule de Moivre en remarquantei5q= (eiq)5.5

Correction del"exer cice1 NRemarquons d"abord que pourz2C,zz=jzj2est un nombre réel, ce qui fait qu"en multipliant le dénominateur

par son conjugué nous obtenons un nombre réel. =35 +65
i:

Calculons

1+i2i=(1+i)(2+i)5

=1+3i5 et 1+i2i 2 =1+3i5 2 =8+6i25 =825 +625
i: Donc 1+i2i 2 +3+6i34i=825 +625
i35 +65
i=2325 +3625
i:

Soitz=2+5i1i. Calculonsz+z, nous savons déjà que c"est un nombre réel, plus précisément :z=32

+72
iet doncz+z=3.Correction del"exer cice2 N1.z1=2eip3 =2(cosp3 +isinp3 ) =2(12 +ip3 2 ) =1+ip3.

2.z2=3eip8

=3cosp8

3isinp8

=3p2+p2 2

3ip2p2

2 Il nous reste à expliquer comment nous avons calculé cos p8 et sinp8 : posonsq=p8 , alors 2q=p4 et donc cos(2q)=p2 2 =sin(2q). Mais cos(2q)=2cos2q1. Donc cos2q=cos(2q)+12 =14 (2+p2). Et ensuite sin

2q=1cos2q=14

(2p2). Comme 06q=p8 6p2 , cosqet sinqsont des nombres positifs. Donc cos p8 =12 q2+p2;sinp8 =12 q2p2:Correction del"exer cice3 NNous avons u=p6p2i2 =p2 p3 2 i2 =p2 cosp6 isinp6 =p2eip6 puis v=1i=p2eip4

Il ne reste plus qu"à calculer le quotient :

uv =p2eip6p2eip4 =eip6 +ip4 =eip12 :Correction del"exer cice4 ND"après la formule de Moivre poureianous avons : e eia=ecosa+isina=ecosaeisina: Orecosa>0 donc l"écriture précédente est bien de la forme "module-argument". 6

De façon générale pour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

. En effet e iu+eiv=eiu+v2 eiuv2 +eiuv2 =eiu+v2

2cosuv2

=2cosuv2 eiu+v2 Ce qui est proche de l"écriture en coordonées polaires.

Pour le cas qui nous concerne :

z=eiq+e2iq=e3iq2 h eiq2 +eiq2 i =2cosq2 e3iq2 Attention le module dans une décomposion en forme polaire doit être positif ! Donc si cos q2 >0 alors 2cosq2 est le module dezet 3q=2 est son argument ; par contre si cosq2 <0 le module est 2jcosq2 jet l"argument

3q=2+p(le+pcompense le changement de signe careip=1).Correction del"exer cice5 NRacines carrées.Soitz=a+ibun nombre complexe aveca;b2R; nous cherchons les complexesw2Ctels

quew2=z. Écrivonsw=a+ib. Nous raisonnons par équivalence : w

2=z,(a+ib)2=a+ib

,a2b2+2iab=a+ib Soit en identifiant les parties réelles entre elles ainsi que les parties imaginaires : a2b2=a 2ab=b Sans changer l"équivalence nous rajoutons la conditionjwj2=jzj. 8 :a

2+b2=pa

2+b2 a 2b2=a 2ab=b Par somme et différence des deux premières lignes : 8 :a

2=a+pa

2+b22 b

2=a+pa

2+b22 2ab=b ,8 >:a=qa+pa 2+b22 b=qa+pa 2+b22 abest du même signe queb Cela donne deux couples(a;b)de solutions et donc deux racines carrées (opposées)w=a+ibdez. 7 En pratique on répète facilement ce raisonnement, par exemple pourz=86i, w

2=z,(a+ib)2=86i

,a2b2+2iab=86i a2b2=8 2ab=6 ,8 :a

2+b2=p8

2+(6)2=10 le module dez

a 2b2=8 2ab=6 ,8 :2a2=18 b 2=1 2ab=6 ,8 :a=p9=3 b=1 aetbde signes opposés ,8 :a=3 etb=1 ou a=3 etb= +1

Les racines dez=86isont doncw1=3ietw2=w1=3+i.

Pour les autres :

Les racines carrées de 1 sont : +1 et1.

Les racines carrées de isont :p2

quotesdbs_dbs1.pdfusesText_1
[PDF] exos maths term stmg

[PDF] exotisme chez baudelaire

[PDF] expansion de l'islam dans le monde

[PDF] expansion du nom apposition

[PDF] expansion du nom exercices

[PDF] expansion du nom leçon

[PDF] expatriation des français

[PDF] expatriés français par pays

[PDF] expérience de hill corrigé

[PDF] expérience de hill protocole

[PDF] expérience de millikan

[PDF] expérience de morgan et ruscetti correction

[PDF] expérience de rutherford conclusion

[PDF] experience de rutherford prepa

[PDF] expérience de thomson e/m