[PDF] Résistance des matériaux : élasticité méthodes énergétiques





Previous PDF Next PDF



ÉLASTICITÉ

Les équations de l'élasticité linéaire sont établies au chapitre 4. En ce Exercice 5 ∗ A partir de la formule de Gauss-Ostrogradsky démontrer la for ...



Untitled

20 feb 2019 2°) L'élasticité linéaire est appliquée : A) seulement aux matériaux ... Exercice n°1: (4 pts). On souhaite diminuer de 5 mm la longueur d'un ...



Déformations - Exercice 1

Représentation de la surface de von Mises dans l'état des contraintes principales. Page 16. TD3 : MATERIAUX ELASTIQUES. Matériau isotrope élastique linéaire. L' 



Exercices de Mécanique des milieux continus

29 mar 2020 Quel est le lien le tenseur déformation donné et le champ de déplacement du début de l'exercice ? ... élasticité linéaire en déformations planes ( ...



(Cours) Elasticité linéaire

4 nov 2009 le strict minimum de variables d'état pour pour un matériau en phase solide à savoir la température aboslue et le tenseur des déformations ...



Exercice 1 : Dynamique dune barre rectiligne

Le comportement est élastique linéaire et isotrope (exercices 1 et 3) ou élastoplastique (exercice 2) la partie élastique étant également linéaire et isotrope.



Les Exercice Corrige Calcul En Hydraulique ? - web.mei.edu

initiation à l'élasticité en transformation finie est proposée en exercices. linéaire calcul différentiel et calcul. Page 15. Les Exercice Corrige Calcul En ...



rdm-2010-corrige.pdf

Sur le diagramme de traction présenté ci dessous déterminer : la limite d'élasticité



I3-6 — Mécanique des Structures II Résolution de problèmes d

2 ene 2012 La résolution est proposée sous la forme d'exercices dirigés. Les problèmes proposés sont : – la traction-compression d'une barre cylindrique;.



Untitled

Feb 20 2019 2°) L'élasticité linéaire est appliquée : A) seulement aux matériaux ... Exercice n°1 : (4 pts) ... CORRIGE TYPE DU CONTROLE PARTIEL.



ÉLASTICITÉ

Les équations de l'élasticité linéaire sont établies au chapitre 4. En ce qui concerne la compatibilité on peut



Déformations - Exercice 1

Représentation de la surface de von Mises dans l'état des contraintes principales. Page 16. TD3 : MATERIAUX ELASTIQUES. Matériau isotrope élastique linéaire. L' 



Résistance des matériaux : élasticité méthodes énergétiques

Jun 20 2011 4.2.5 Exercice : contraintes et énergie de déformation . ... comportement du matériau est élastique et linéaire



MMC-exercices-corrigés-03.pdf

Exercice 2 : Soit le tenseur des contraintes défini par : (M)= 0 Le comportement est élastique linéaire et isotrope de modules de l'amé et p.



Elasticité MMC_Page de garde

à rédiger un support de cours pour le module « Elasticité- EXERCICE D'APPLICATION . ... Mécanique des milieux continus - Cours et exercices corrigés.



INTRODUCT MMI Ex TION A LA MECANIQU MIILIEUX CONTINUS

Corrigés. Exercice A. Soit un tenseur symétrique. Dans la base.



Cours Elasticité

L'élasticité linéaire concerne les petites déformations proportionnelles à la M. Polycopie mécanique des milieux continus exercices corrigés avec ...



Mécanique des matériaux

Nov 16 2017 Pré-requis. Cours de mécanique des milieux continus



´Elasticité

2.8 Petits déplacements et petites déformations : élasticité linéaire . G. Duvaut F. Léné



ÉLASTICITÉ - uliegebe

Les équations de l'élasticité linéaire sont établies au chapitre 4 En ce qui concerne la compatibilité on peut en première lecture s'arrêter après les équa-tions de Beltrami-Michell Suivent trois chapitres d'application Le premier traite de la torsion des poutres prismatiques un problème où les insu sances de la résistance



ÉLASTICITÉ

Elasticit e 3 1 1 4 Cas particulier : ´etat de contraintes planes Le tenseur des contraintes se r´eduit `a : [?] =?xx ?xy 0 ?xy ?yy 0 0 0 0 (1 1 13) d’ou` l’expression du tenseur des d´eformations :



PROBLÈMES SUR LA VISCOÉLASTICITÉ LINÉAIRE Problème 03 – 01

PROBLÈMES SUR LA VISCOÉLASTICITÉ LINÉAIRE Problème 03 – 01 Lequel de ces matériaux est thermodynamiquement admissible? Justi?ez votre réponse pour chaque matériau C(t) = 2 6 6 6 6 6 6 4 7 17 17 0 0 0 17 7:5 4:5 0 0 0 17 4:5 7:5 0 0 0 0 0 0 12 0 0 0 0 0 0 7 0 0 0 0 0 0 7 3 7 7 7 7 7 7 5 exp[ t] (1a) C(t) = 3Jexp[ 2t]+4K(2+3t+5t2



ELASTICIT ´ E - EXERCICES´

ELASTICIT´ E - EXERCICES´ Contraintes planes - D´eformations planes Nous travaillons ici dans un syst`eme de coordonn´ees cart´esien (O;x1;x2;x3)dans l’hypoth`ese des petites perturbations et avec une loi de comportement



Viscoélasticité pour le Calcul des structures

ment viscoélastique linéaire du milieu continu tridimensionnel isotrope s’écrit algébri-quement avec l’opérateur intégral de Boltzmann sous la même forme qu’en élasticité linéaire au moyen de deux fonctions de relaxation homologues des coe?cients clas-siques



(Cours) Elasticit e lin eaire - CORE

thermo-élasticité linéaire isotrope 1 1 Problème de structure en thermo-élasticité linéaire isotrope : hy-pothèses et énoncé qualitatif En Génie Mécanique ou en Génie Civil un ingénieur spécialisé en Mécanique des solides a très souvent à résoudre des problèmes de structures Pour ce faire un ingénieur en première



OSCILLATEURHARMONIQUE:CORRECTIONS - Institut national de

supposé que l’on peut utiliser l’approximation linéaire pour modéliser l’élasticité des res-sorts 1 Calculer l’allongement de chacun des ressorts On note x1 et x2 les allongements respectifs des ressorts 1 et 2 à l’équilibre comme re-présenté sur le schéma ci-contre Ces deux inconnues sont reliées par la re-



Elements ?nis de Lagrange´ - univ-amufr

4 1 ESPACE D’APPROXIMATION CHAPITRE 4 ELEM´ ENTS FINIS DE LAGRANGE´ a1 a2 a3 ?1 a1 a2 a3 ?2 a1 a2 a3 ?3 FIGURE4 1 – fonctionsde base locales pour l’e´le´ment ?ni de LagrangeP



Feuille d’exercices I : révisions d’algèbre linéaire 1

Algèbre linéaire 2 L2 - MATH Feuille d’exercices I : révisions d’algèbre linéaire 1 Exercice 1 1 Montrerquelesvecteursv 1 = (0;1;1)v 2 = (1;0;1)v 3 = (1;1;0) formentunebasedeR3 (a) Trouverlescomposantesduvecteurw = (1;1;1) danscettebase (b) Trouverlescomposantesdesvecteurscanoniquese 1e 2e 3 danscettebase 2



Exercices corrigés algèbre linéaire - Dauphine-PSL Paris

d)Pour Eun espace vectoriel et pune application linéaire de Edans lui-même on dé?nitf: E?Eparf(x) = p(p(x)) Exercice3(Autourdesendomorphismesnilpotents) SoitEunespacevectorieldedimension?nienetfunendomorphismedeE 1 Onsupposequefestnilpotentc’est-à-direqu’unecertainepuissancedefestnulle



MECANIQUE DES MATERIAUX SOLIDES SOLUTIONS DES EXERCICES

1 Analyse élastique 1 1 Donner la solution (champs des contraintes et des déplacements) en élasticité Le volume étudié est à symétrie sphérique constitué d’un matériau homogène et isotrope; les conditions aux limites possèdent aussi la symétrie sphérique



Microéconomie et mathématique (avec solutions) 3 Élasticités

élasticité-revenu de la demande (er) 1 Les variables se rapportent au bien X à l'exception de PY (= Prix du bien Y) Demande : Q = 200 - 5P - 2PY + 0 2R (R = Revenu) si P = 10 PY = 12 R = 1000 3 91 Calculez e 3 92 Calculez ec 3 93 Calculez er 3 10 Élasticité-prix de la demande (e) élasticité-prix croisée de la demande (ec) et

Quel est le théorème de l'élasticité linéaire?

  • 104 CHAPITRE 5. ÉLASTICITÉ LINÉAIRE Théorème 6 Si un champ de déformations satisfait aux seules quationsé de ompcatibilité T 11= 0, T 22= 0 et T 33= 0 dans un domaine V, le tenseur T

Quelle est la différence entre la théorie de l’élas-ticité et la plasticité?

  • Avec la théorie de l’Élas- ticité, puis la théorie de la Plasticité, le comportement du matériau constitutif étant pris en compte, le calcul des structures permet d’envisager aussi le second critère en calculant les déformations et déplacements de l’ouvrage sous l’e?et des diverses sollicitations.

Quel est le mode d'exposé d'un problème élastique linéaire?

  • Le présent mode d'exposé suit la méthode développée par l'auteur [17, 21, 20, 18]. Soit donc un problème élastique linéaire, dont la solution est caractérisée par des déplacements uet des contraintes ?, obtenues par avriation des fonc- tionnelles ˆ E(u) = R

Comment calculer le problème élastique?

  • comme des ariablesv indépendantes et à ignorer au départ les relations (9.25). Dans cette optique, le problème élastique consiste à minimiser la fonctionnelle E(";u) = U(") + P(u) (9.26) avec U(") = Z V

R´esistance des mat´eriaux :

´elasticit´e,

m´ethodes ´energ´etiques, m´ethode des ´el´ements finis

Rappels de cours

et exercices avec solutions

Yves Debard

Institut Universitaire de Technologie du Mans

D´epartement G´enie M´ecanique et Productique

20 juin 2011

Table des mati`eres

1

´Elasticit´e

1

1.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 D´eplacements et d´eformations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Contraintes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Loi de comportement ou loi constitutive

. . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Cas particulier : ´etat de contraintes planes

. . . . . . . . . . . . . . . . . . . . . 3

1.1.5 Formules math´ematiques

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 M´ethode des ´el´ements finis : approche r´esistance des mat´eriaux

25

2.1 Rappels : r´esolution d'un probl`eme stationnaire

. . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Partition des degr´es de libert´e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Calcul des d´eplacements inconnus

. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Calcul des r´eactions d'appui

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Poutre soumise `a un effort normal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Treillis plans `a noeuds articul´es

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Poutre soumise `a un moment de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Flexion des poutres `a plan moyen : mod`ele de Bernoulli

. . . . . . . . . . . . . . . . . 58

2.5.1 Rappels : flexion dans le plan{xy}

. . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 M´ethodes ´energ´etiques : poutres

83

3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Expression de l'´energie de d´eformation en fonction des forces appliqu´ees : for-

mule de Clapeyron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.2 Th´eor`eme de r´eciprocit´e de Maxwell-Betti

. . . . . . . . . . . . . . . . . . . . . 83

3.1.3 Th´eor`eme de Castigliano

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.4 Th´eor`eme de M´enabr´ea

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.5

´Energie de d´eformation d'une poutre

. . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.6 Formules math´ematiques utiles

. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IIExercices de resistance des materiaux

4 M´ethode des ´el´ements finis

121

4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.1

´Energie de d´eformation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.2

´Energie cin´etique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.1.3

´Energie potentielle et ´el´ements finis

. . . . . . . . . . . . . . . . . . . . . . . . 123

4.1.4 Modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Assemblage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.2 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 126

4.2.3 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.4 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.5 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 132

4.2.6 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 134 4.2.7 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 137

4.2.8 Exercice : modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2.9

´El´ement fini de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.10

´El´ement fini de flexion : mod`ele de Bernoulli . . . . . . . . . . . . . . . . . . . 144

4.2.11 Exercice : ´elasticit´e plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapitre 1

Elasticit´e

1.1 Rappels

Les d´eplacements et les d´eformations sont petits.

1.1.1 D´eplacements et d´eformations

Vecteur d´eplacement :

⃗u=---→M0M ,{u}= u(x,y,z) v(x,y,z) w(x,y,z) (1.1.1)

Tenseur des d´eformations :

xx1 2

γxy1

2

γxz

1 2

γxyεyy1

2

γyz

1 2

γxz1

2

γyzεzz

,[ε]T= [ε](1.1.2) xx=∂u ∂x , εyy=∂v ∂y , εzz=∂w ∂z (1.1.3a) xy=∂u ∂y +∂v ∂x , γxz=∂u ∂z +∂w ∂x , γyz=∂w ∂y +∂v ∂z (1.1.3b) Allongement unitaire enMdans la direction{n}= n x n y n z

ε(M,⃗n) ={n}T[ε(M)]{n}

Glissement enMdans les directions orthogonales⃗naet⃗nb: γ(M,⃗na,⃗nb) = 2{nb}T[ε(M)]{na},{nb}T{na}= 0(1.1.5)

Variation relative de volume :

V(M) = tr[ε] =εxx+εyy+εzz(1.1.6)

2Exercices de resistance des materiaux

1.1.2 Contraintes

Vecteur contrainte sur la facette⃗nenM:

T(M,⃗n) =σn⃗n+⃗τn(1.1.7a)

Soit{n}=

n x n y n z un vecteur unitaire enM. Le vecteur contrainte sur la facette⃗nenMest donn´e par la formule de Cauchy : T x T y T z xxσyxσzx xyσyyσzy xzσyzσzz n x n y n z ,{T}= [σ(M)]{n}(1.1.8) o`u [σ(M)] est le tenseur des contraintes enM.

Le tenseur des contraintes est sym´etrique :

[σ] = [σ]Tsoitσxy=σyx, σxz=σzx, σyz=σzy(1.1.9)

La contrainte normale sur la facette⃗nest :

n={n}T[σ]{n} =n2xσxx+n2yσyy+n2zσzz+ 2nxnyσxy+ 2nxnzσxz+ 2nynzσyz(1.1.10) Soientσ1,σ2etσ3les trois contraintes principales en un pointMd'un solide. Les crit`eres de

Rankine, Von Mises et de Tresca s'´ecrivent :

1 2

1.1.3 Loi de comportement ou loi constitutive

Si le mat´eriau est isotrope, la loi de comportement s'´ecrit : xx=1 E (σxx-ν(σyy+σzz)) yy=1 E (σyy-ν(σxx+σzz)) zz=1 E (σzz-ν(σxx+σyy))(1.1.12a) xy=σxy G , γxz=σxz G , γyz=σyz G , G=E

2(1 +ν)(1.1.12b)

o`uEetνsont respectivement le module de Young et le coefficient de Poisson du mat´eriau.

Elasticite3

1.1.4 Cas particulier : ´etat de contraintes planes

Le tenseur des contraintes se r´eduit `a :

xxσxy0 xyσyy0

0 0 0

(1.1.13) d'o`u l'expression du tenseur des d´eformations : xx1 2

γxy0

1 2

γxyεyy0

0 0εzz

(1.1.14) et de la loi de comportement : xx=E

1-ν2(εxx+ν εyy), σyy=E

1-ν2(εyy+ν εxx)

zz=-ν E (σxx+σyy), σxy=Gγxy, G=E

2(1 +ν)(1.1.15)

Les contraintes et les d´eformations principales sont : 1 2} =σxx+σyy 2 ±1 2 (σxx-σyy)2+ 4σ2xy, σ3= 0(1.1.16) 1 2} =εxx+εyy 2 ±1 2 (εxx-εyy)2+γ2xy, ε3=εzz(1.1.17)

Les directions principales sont :

{n1}= cosθ1 sinθ1

0

,{n2}= -sinθ1 cosθ1

0

,{n3}= 0 0

1

avec tanθ1=σ1-σxx xy(1.1.18) Les crit`eres de Rankine, Von Mises et de Tresca se r´eduisent `a : L'allongement unitaire enMdans la direction{n}= n x n y

0

se r´eduit `a : ε(M,⃗n) ={n}T[ε(M)]{n}=n2xεxx+n2yεyy+nxnyγxy(1.1.20)

4Exercices de resistance des materiaux

1.1.5 Formules math´ematiques

Valeurs et vecteurs propres d'une matrice sym´etrique de dimension deux `a coefficients r´eels :

Consid´erons la matrice sym´etrique [S] :

[S] =[SxxSxy S xySyy] ,([S]T= [S])(1.1.21) Les valeurs propresSn=1,2et les vecteurs propres{n}sont les solutions de l'´equation : [S]{n}=Sn{n},[SxxSxy S xySyy]{ nx n y} =Sn{nx n y} avecn2x+n2y= 1(1.1.22) soit :

Sxx-SnSxy

S xySyy-Sn]{ nx n y} ={0 0} (1.1.23) Cette ´equation n'a de solution autre que la solution trivialenx=ny= 0 que si et seulement si : det [Sxx-SnSxy S xySyy-Sn] = 0(1.1.24) d'o`u l'´equation caract´eristique : S

2n-(Sxx+Syy)|

{z tr[S]=S1+S2S n+SxxSyy-S2xy| {z det[S]=S1S2= 0(1.1.25) et les valeurs propres : S 1 S 2} =Sxx+Syy 2 ±1 2 (Sxx-Syy)2+ 4S2xy(1.1.26)

Les vecteurs propres associ´es sont :

{n1}={cosθ1 sinθ1} ,{n2}={cosθ2 sinθ2} ={-sinθ1 cosθ1} (1.1.27) avec : tanθ1=S1-Sxx S xy,tanθ2=S2-Sxx S xy(1.1.28) Remarque: les deux directions principales sont orthogonales : |θ1-θ2|=π 2 ,tan2θ1= tan2θ2=2Sxy S xx-Syy,tanθ1tanθ2=-1 (1.1.29) D´eterminant d'une matrice carr´ee sym´etrique de dimension 3 : det S

11S12S13

S

21S22S23

S

31S32S33

=S11det[S22S23 S

32S33]

-S21det[S12S13 S

32S33]

+S31det[S12S13 S

22S23]

=S11S22S33-S11S223-S33S212-S22S213+ 2S12S13S23(1.1.30)

Elasticite5

Formules trigonom´etriques :

tanφ=sinφ cosφ,cos(-φ) = cosφ ,sin(-φ) =-sinφ(1.1.31) cos(φ1+φ2) = cos(φ1) cos(φ2)-sin(φ1) sin(φ2)(1.1.32) sin(φ1+φ2) = sinφ1cosφ2+ cosφ1sinφ2(1.1.33) cos

2φ=1 + cos2φ

2 ,sin2φ=1-cos2φ 2 ,sinφcosφ=sin2φ 2 (1.1.34) cos 2 = sinφ(1.1.35) cos45 ◦= sin45◦=1 2 2 2 ,cos60◦=1 2 3 2 (1.1.36) cos120 ◦=-1 2 3 2 (1.1.37)

Sixetysont petits devant l'unit´e :

|x|≪1,|y|≪1(1.1.38a) on a les relations :

1 +x≃1 +x

2 ,1

1 +x≃1-x ,(1 +x)(1 +y)≃1 +x+y(1.1.38b)

sinx≃x ,cosx≃1-x2 2 ,tanx≃x(1.1.38c)

6Exercices de resistance des materiaux

1.2 Exercices

ELAquotesdbs_dbs14.pdfusesText_20
[PDF] élasticité linéaire isotrope

[PDF] élasticité logarithme

[PDF] elasticité mercatique calcul

[PDF] élasticité prix de l'offre calcul

[PDF] élasticité prix de l'offre definition

[PDF] elasticité prix de la demande monopole

[PDF] électifs sciences po

[PDF] election parents d'élèves 2016 2017

[PDF] election parents d'élèves 2017 2018

[PDF] election parents d'élèves 2018

[PDF] election primaire 2016

[PDF] election representants des parents d'eleves 2017

[PDF] elections au conseil d'administration des eple

[PDF] élections des représentants de parents d'élèves 2017 2018

[PDF] elections des représentants des personnels au conseil d'administration 2017