[PDF] Calcul du rayon du cercle inscrit à un triangle rectangle





Previous PDF Next PDF



TRIANGLES RECTANGLES ET CERCLES

2 propriétés caractéristiques du triangle rectangle: P1 Cercle circonscrit à un triangle rectangle. SI un triangle est rectangle. ALORS Le centre de son 



Triangle rectangle et cercle circonscrit. Théorème de Pythagore et

Le théorème suivant précise où se trouve le centre de ce cercle. Théorème 1 (du cercle circonscrit). Les trois médiatrices d'un triangle ABC sont concourantes 



Calcul du rayon du cercle inscrit à un triangle rectangle

Soit I le centre du cercle inscrit à ce triangle et soit r le rayon de ce cercle. 1. Calculer l'aire du triangle rectangle ABC.



Ch 10 : Cercle circonscrit à un triangle rectangle 1 Sens direct 2

Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de l'hypoténuse. I. A. B. C. Démonstration : Soit ABC un triangle 



Chap 20 triangle rectangle et cercle

les médiatrices d'un triangle sont concourantes en un point appelé centre du cercle circonscrit …………. Données de l'énoncé : - ABC triangle rectangle en A ce 



4 Chap G3 TRIANGLE RECTANGLE ET CERCLE. TRIANGLE

Prop : Dans un triangle les médiatrices des côtés sont concourantes en un point qui est le centre du cercle circonscrit au triangle . Construction du cercle 



CERCLE CIRCONSCRIT A UN TRIANGLE RECTANGLE

I. Propriété du cercle circonscrit à un triangle rectangle. (Découverte par Thalès). Si un triangle est rectangle alors le centre de son cercle circonscrit 



cercle circonscrit au triangle rectangle exercice 4 - corrige – m. quet

PUISQUE le triangle ABC est rectangle en A. ALORS le centre du cercle circonscrit est le milieu de l'hypoténuse [BC]. b. En déduire l'égalité de 3 longueurs 



cours triangle rectangle et cercle circonscrit

Remarque : Le centre du cercle circonscrit à un triangle rectangle est le milieu de son hypoténuse. Donnée. Conclusion. A. B. C. Le triangle ABC est rectangle 



Droites et points remarquables dun triangle - Fiches de cours

Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle le centre du 



[PDF] cours triangle rectangle et cercle circonscrit

Remarque : Le centre du cercle circonscrit à un triangle rectangle est le milieu de son hypoténuse Donnée Conclusion A B C Le triangle ABC est rectangle 



[PDF] Triangle rectangle et cercle circonscrit Théorème de Pythagore et

Théorème 1 (du cercle circonscrit) Les trois médiatrices d'un triangle ABC sont concourantes en un point O Ce point O est le centre du cercle circonscrit



[PDF] CERCLE CIRCONSCRIT A UN TRIANGLE RECTANGLE

Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de l'hypoténuse Conséquence : Si un triangle est rectangle alors le 



[PDF] Triangle rectangle et cercle

Prop : Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de son hypoténuse Démonstration : tracer un triangle ABC rectangle 



[PDF] Cercle Circonscrit `a un triangle rectangle - Cours de maths 4`eme

Le point de concours des trois médiatrices est le centre du cercle circonscrit Pour tracer le cercle circonscrit il suffit de tracer deux médiatrices de 



[PDF] Cercle circonscrit dun triangle rectangle Activité 2

Observe la position du centre du cercle circonscrit quand les angles de ce triangle sont aigus ; puis quand l'angle DEF est obtus et ensuite quand il est 



[PDF] Triangle rectangle et cercle circonscrit - Melusine

Le triangle RST est rectangle en R 1 Quelle est la mesure de l'angle ? RST ? 2 Déterminer le centre et le rayon du cercle C 



[PDF] TRIANGLE RECTANGLE CERCLE MEDIANE

Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de l'hypoténuse Si dans un cercle un triangle a pour sommets les 2



[PDF] Cercle circonscrit à un triangle rectangle

Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de l'hypoténuse I A B C Démonstration : Soit ABC un triangle 



[PDF] TRIANGLE RECTANGLE ET CERCLE CIRCONSCRIT

Le centre du cercle circonscrit semble être confondu avec le milieu de l'hypoténuse ? Preuve de la concourance des 3 médiatrices d'un triangle: ? Mise en 

:
Calcul du rayon du cercle inscrit à un triangle rectangle

Exercice 1 :

Soit ABC un triangle rectangle en C.

Nous appellerons a la longueur du coté [BC] , b la longueur du côté [AC] et c la longueur du coté [AB] . Soit I le centre du cercle inscrit à ce triangle et soit r le rayon de ce cercle.

1. Calculer l·MLUH GX PULMQJOH UHŃPMQJOH $%FB

2. Calculer les aires des triangles CIB , AIC et

BIA .

3. En déduire que ar + br + cr = ab , puis que

c b a ab r

4. Applications numériques : ( unité : le cm )

a)Calculer le rayon du cercle inscrit du triangle rectangle dont les côtés mesures 3 , 4 et 5. b)Calculer le rayon du cercle inscrit au triangle

EFG rectangle en E tel que EF = 5 et FG = 13.

Exercice 2:

Soit ABC un triangle rectangle en C.

Nous appellerons a la longueur du coté [BC] , b la longueur du côté [AC] et c la longueur du coté [AB] . Soit I le centre du cercle inscrit à ce triangle et soit r le rayon de ce cercle.

1. Montrer que BR = BT , puis que AS = AT.

2. Déterminer BR et AS.

THEME :

Calcul du rayon du cercle

inscrit dSun triangle rectangle

3. En constatant que BA = BT + TA, en déduire que :

) c - b a ( 2

1 r ou 2

c - b a r

FRUUHŃPLRQ GH O·H[HUŃLŃH 1 :

1. Aire du triangle ABC :

IH PULMQJOH $%F pPMQP UHŃPMQJOH HQ F O·MLUH GX PULMQJOH $%F HVP pJMOH j : 2 ab 2 b a 2

AC BCu u

2. Calcul des aires des triangles CIB , AIC et

BIA :

Aire du triangle CIB :

2 r a 2

IR BCu

Aire du triangle AIC :

2 r b 2

IS ACu

Aire du triangle BIA :

2 r c 2

IT ABu

3. Calcul de r en fonction de a , b et c :

I·MLUH GX PULMQJOH $%F HVP pJMOH j OM VRPPH GHs aires des trois triangles CIB , AIC et BIA .

BIAAICCIBABC AAAA

donc : 2 r c 2 r b 2 r a 2 ab 2 r c r b r a 2 ab

Puis en simplifiant par 2,

ab = a r + b r + cr ab = r ( a + b + c ) c b a ab = r r = c b a ab

4. Applications numériques :

Cas 1 : Rayon du cercle inscrit du triangle rectangle dont les côtés mesures 3 , 4 et 5.

I·O\SRPpQXVH GH ŃH PULMQJOH UHŃPMQJOH HVP D GRQŃ Ń 13B 0MLQPHQMQP OH ŃORL[ GH M HP N HVP V\PpPULTXHB

Nous pouvons poser a = 3 et b = 4 ou a = 4 et b = 3. Le rayon r du cercle inscrit est donc égal à : r = 112
12

5 4 3

4 3 u Cas 2 : Rayon du cercle inscrit du triangle EFG rectangle en E tel que EF = 5 et FG = 13. FMOŃXORQV PRXP G·MNRUG OM ORQJXHXU GX PURLVLqPH Ń{Pp B

Dans le triangle EFG rectangle en E

G·MSUqV OH POpRUqPH GH 3\POMJRUH QRXV MYRQV :

FG² = EF² + EG²

13² = 5² + EG²

169 = 25 + EG²

169 ² 25 = EG²

EG² = 144

EG = 144
= 12 Le rayon r du cercle inscrit est donc égal à : r = 2 6

2 6 6 5

12 5 30

12 5

13 12 5

12 5u u

u u u

Remarque :

GMQV GH QRPNUHXVHV IRUPXOHV PMPOpPMPLTXHV ŃRQŃHUQMQP OH PULMQJOH RQ XPLOLVH XQH GRQQpH V·MSSHOMQP OH

demi-périmètre. IH SpULPqPUH G·XQ PULMQJOH TXHOŃRQTXH GRQP OHV Ń{PpV PHVXUHQP M N HP Ń HVP pJMO j : a + b + c Le demi-périmètre p est alors égal à p = 2 c b a

GMQV OH ŃMV G·XQ PULMQJOH UHŃPMQJOH QRXV YHQRQV GH GpPRQPUHU TXH OH UM\RQ GX ŃHUŃOH LQVŃULP HVP j JMO j :

c b a ab r Nous avons également MYHŃ 6 O·MLUH GX PULMQJOH HP S le demi périmètre ) r = p S 2 c b a 2 b a r = p S

FRUUHŃPLRQ GH O·H[HUŃLŃH 2 :

1. Montrer que BR = BT , puis que AS = AT :

Soit C un cercle et soit M un point extérieur à ce cercle. Si (MA) et (MB) sont les tangentes issues de M à ce cercle en

A et B, alors MA = MB

( Cf. Thème : Tangente à un cercle ) Sans utiliser ce résultat, nous pouvons faire une démonstration rapide en utilisant le théorème de

Pythagore.

Dans le triangle BRI rectangle en R ,

G·MSUqV OH POpRUqPH GH 3\POMJore, nous avons :

BI² = BR² + RI²

BI² - RI² = BR²

BR² = BI² - r² (1)

Dans le triangle BTI rectangle en R ,

G·MSUqV OH POpRUqPH GH 3\POMJRUH QRXV MYRQV :

BI² = BT² + TI²

BI² - TI² = BT²

BT² = BI² - r² (2)

Des deux égalités (1) et (2), nous en déduisons :

BR² = BT²

Et comme BR et BT sont des nombres positifs ( longueurs de cotés de triangle ), nous avons :

BR = BT

Une démonstration identique permet de démontrer que AS = AT et même que CR = CS ( égalité déjà

connue car CR = CS = r ).

2. Calcul de BR et AS :

Le quadrilatère CSIR est un carré ( 3 angles droits et deux côtés consécutifs de même longueur )

Donc RC = r.

R est un point du segment [BC], donc BC = BR + RC

Donc a = BR + r

Et par suite BR = a - r

S est un point du segment [AC], donc AC = AS + SC

Donc b = AS + r

Et par suite AS = b - r

3. Calcul du rayon du cercle inscrit au triangle :

Nous avons :

BA = BT + TA

Or BR = BT et AS = AT

Donc BA = BT + TA

Donc : c = ( a ² r ) + ( b ² r )

c = a ² r + b - r c = a + b ² 2r

2r = a + b ² c

Et par suite

) c - b a ( 2

1 r ou 2

c - b a r

9pULILŃMPLRQ SRXU OHV GHX[ ŃMV QXPpULTXHV pPXGLpV GMQV O·H[HUŃLŃH 1

Cas 1 :

r = 1 2 2 2

5 - 4 3

Cas 2 :

r = 2 2 4 2

13 - 12 5

Remarque :

Le rayon du cercle circonscrit à un triangle rectanglH HVP pJMO j OM PRLPLp GH OM ORQJXHXU GH O·O\SRPpQXVHB

quotesdbs_dbs28.pdfusesText_34
[PDF] determiner le centre et le rayon du cercle circonscrit

[PDF] équation d'une médiatrice

[PDF] triangle pdf

[PDF] calculer la longueur d'une mediane dans un triangle quelconque

[PDF] calcul décile exemple

[PDF] les déciles revenus

[PDF] déciles définition

[PDF] calcul densité lithosphère océanique

[PDF] calculer les expressions suivantes 3eme

[PDF] chimie durable et valorisation du co2 correction

[PDF] la chimie durable activité correction

[PDF] effets des métaux lourds sur l'environnement pdf

[PDF] produit vectoriel exemple

[PDF] bilan de matière exercices

[PDF] bilan matière industrie