[PDF] ´Eléments de calculs pour létude des fonctions de plusieurs





Previous PDF Next PDF



´Eléments de calculs pour létude des fonctions de plusieurs

Les exercices `a faire en TD se trouvent `a la suite du cours et les corrections 1.2.2 Comment représenter le graphe d'une fonction de deux variables 8.



Fonctions de plusieurs variables

Exercice 1 **T. Etudier l'existence et la valeur éventuelle d'une limite en (00) des fonctions suivantes : 1. xy x+y. 2. xy x2+y2.



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Exercice 11. On note E l'espace vectoriel des suites réelles nulles à partir d'un certain rang. Pour u = (un).



MT22-Fonctions de plusieurs variables et applications

Toutes les fonctions citées ci-dessus sont des fonctions reliant une variable à deux ou trois autres variables. Page 6. Sommaire. Concepts. Exemples. Exercices.



Fonctions de plusieurs variables et applications pour lingénieur

1.1 Fonctions de deux variables à valeurs réelles . Exercice 3.14 : Le but de ce problème est d'étudier suivant les valeurs de ? > 0



´Eléments de calculs pour létude des fonctions de plusieurs

Dans ce module il est question de fonctions de plusieurs variables et Les exercices `a faire en TD se trouvent `a la suite du cours et les corrections ...



TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables. Exercice 1. Montrer d'après la definition que la fonction : f(x y) = x2 + y2.



Fonctions de plusieurs variables & géométrie analytique

Étude pratique des limites de fonctions réelles de plusieurs variables 76 Pour la démonstration de ce théorème voir l'exercice 1.4



Daniel Alibert - Cours et exercices corrigés - volume 12

Fonctions de plusieurs variables. Intégrales dépendant d'un paramètre. Objectifs : Chercher si une fonction de plusieurs variables est continue. Calculer ses.



Fonctions de plusieurs variables

Donc f n'a pas de limite réelle quand (x

INSTITUTUNIVERSITAIREDE TECHNOLOGIE

IUT"A"Pa ulSabatier ,Toulouse3.

DUTG´enieC ivil

ModuledeMath´ematiq ues.

MATH

EMATIQUES

El´ementsdecalculspourl'´ etude

desfonc tionsdeplusieursvariables etdes ´equati onsdi

´erentielles.

G.Ch `eze

guillaume.cheze@iut-tlse3.fr http://www.mat h.univ-toulouse.fr/!cheze/Enseignements.html 2

R`egledujeu

Ceciestunsup portdecou rspou rlemoduleM3del'IUTG´enieCiv ilde Toulouse.Danscemoduleilest questiondefo nctions deplusieursvariableset d'´equationsdi

´erentielles.

Certainspassagesdecec ourscomportentdestrous, ilssontl` avolontairement. C'est`avousde lescomp l´eterduran tl'heure decour shebdomadaire.Lapar tie ducour strait´eeenamph ith´eˆatreseracompl´e t´eeet disponibler´eg uli`erementsur internet`al'adresse:http://www.ma th.univ-toulouse.fr/!cheze/. Lesexercic es`afaireenTDsetrouvent` alasuite ducoursetles corrections`ala findech aquech apitre. Jeser aireconnaissant` atoutepersonnemesignalantuneoudeserreursse trouvantdanscedocum ent.

Apr ´esent,autravailetboncourag e`atou s!

i iiR`egledujeu

Tabledesmati` eres

R`egledujeui

IFonctionsdeplusieursvariables1

1Fonctionsdeplusieursvariables5

1.1D´efi nition.................................5

1.2Repr ´esentationgraphiqued'unefonctiondedeuxvariable s......6

1.2.1D´efin ition.............................6

1.2.2Commen trepr´esenterlegraphe d'unefonctiondedeuxvariables8

1.3Exer cicesduTD.............................14

1.4Cor rectiondesexercices.........................17

2D´eriv´eespartielles,Di

´erentielles25

2.1Rapp el...................................25

2.2D´er iv´eespartielles.............................26

2.3Di

2.4Utilisa tiondesdi

´erentielles,di

´erentielled'unefonctioncomp os´ee.30

2.5Exer cicesduTD.............................33

2.6Cor rectiondesexercices.........................34

3Approximationa

ne,Calculd'incertitude37

3.1App roximationd'unefonction`auneseulevaria ble...........37

3.2Appr oximationd'unefonctiondeplusieursvaria bles..........39

3.3Calcu ld'erreur..............................40

3.3.1Lecasd esfonc tionsd'une seulevariab le............40

3.3.2Lecasd esfonc tionsdeplu sieursvaria bles...........42

3.4Exer cicesduTD.............................45

3.5Corr ectiondesexercices.........................48

4Extremad'unefonctiondedeuxvariables55

4.1Rapp eldanslecasd'uneseu levariable.................55

4.2Extr ´emumlocald'unefonctiondeplusie ursvariables.........58

4.3Exer cicesduTD.............................64

4.4Cor rectiondesexercices.........................65

iii ivTABLEDESMATI ERES II

Equationsdi

´erentielles71

1

Equationsdi

´erentielleslin´eairesd'ordre173

1.1Pr´e sentationg´en´erale...........................73

1.1.1

Equationsdi

1.1.2Solution sd'une´equationdi

´erentielle..............74

1.1.3Inter pr´etationg´eom´etrique....................75

1.2M´e thodesder´esolutiondes´equat ionsdi

´erentielleslin´eairesd'o rdre177

1.2.1

1.2.2Calcul d'unesolutionpartic uli`ere................79

1.2.3Solution g´en´erale.........................81

1.2.4Astuce s..............................81

1.3Exer cicesduTD.............................85

1.4Corr ectiondesexercices.........................87

2

Equationsdi

´erentielleslin´eairesd'ordre2`ac oe

cientscons tants95

2.1G´en ´eralit´es................................95

2.2R´es olution.................................96

2.2.1R´esolu tiondel'´equationhomog`eneass oci´ee ..........96

2.2.2Calculd 'unesolutionpartic uli`ere................99

2.3Exe rcicesduTD.............................101

2.4Corr ectiondesexercices.........................102

IIIA nnexes109

AAnnalescorrig´ees111

BTrouverl'erreur121

CAlphabetgrec125

Premi`erepartie

Fonctionsdeplusieursvari ables

1 Jusqu'`apr´esentvousav ezsurtoutrencontr´edesf onctionsd'unevariable. Cepen- dantlesph´eno m`enes naturelsned´ependentpaseng´en´erald'uneseulevar iable.Par exemple:lavitessemoye nne vd´ependdeladistanceparc ourue detdu tempstmis poure ectuerceparcours,o nav=d/t.Un autree xempleestdonn´ep arlecalcul del'aired 'unrectang le:A=L"l.L 'aireestunefon ctiondelalon gueurLetdela largeurl.Da nscettepartie ,nousallons´etud ierlesfonctionsdeplus ieursvariables. Nousauronsun eattentiontoutepar ticuli`erep ourlesfonctionsdedeux variablescar danscecasnou spourr onsencor efairedesdess ins.Ensuitenousverronsquenous pouvonsaussifairedesca lculsded´eriv´ees .Celaserautilis´ epoure !ectuerdescalculs d'incertitudeetpourtrouverlesextr ema(ma ximum,minimum)d 'unefonctionde plusieursvariables. 3 4

Chapitre1

Fonctionsdeplusieursvari ables

Nousallonsdan scechapitred´ efinirlesfonct ionsdep lusieursvariables.Nousno us int´eresseronsplusparticuli`erementauxfonc tionsdedeu xvariablesetauxdive rses

1.1D´efinit ion

L'exempleleplussimpledefon ctio nsdedeux variablesestdo nn´epa rl'aired'un rectangle:A=L"l.Letl´etantdesnombresp ositifsnous repr´esentonscette fonctiondelamani`eresuiv ante: f:R "R #$R (L,l)%#$L"l R "R s'appelleledomaineded´ efin itiondelafonctionf. D'unemani`ere g´en´eralenouspouvonsavo irnvariableso`und´esigneunnombre entier. D´efinition1.Soitnunn ombreentieretDunepart iedeR n .Unefonctionfde nvariablesestunproc´ ed´e quiatoutn-uplet(x 1 ,...,x n )deDassocieununiqu e nombrer´eel.

Celasenote delaman i`eresuivant e:

f:D#$R (x 1 ,...,x n )%#$f(x 1 ,...,x n

Destle domaineded´ efinitiondef.

Remarque:Lanotation(x

1 ,...,x n )es tl`apourm ontrer quenousavons nva- riables.Enpratique,lo rsquen ousn'avonsquedeuxvariables nouslesnoton sxety plutˆotquex 1 etx 2 5

6Fonctionsdeplusieursvariables

Parexemple ,lafonctionsuivantedonn elad istanced'unpointdecoordonn´ees(x,y) `al'origin eduplan. f:R 2 #$R (x,y)%#$ x 2 +y 2 festunefon ctiondedeu xvariables,R 2 estsondom aineded´efi nition. Voici,iciunexe mpled'un efonct iondetroisvariables:( x;y;z). g:R"R"R #$R (x,y,z)%#$ xcos(y)+2y 3 z 5 gestunefo nctiondetr oisvariables,R"R"R estsondo maineded´e finition. Exercice1.Lafo rmulesuivantepermetd ed´efinirunefonctionde2v ariables: f(x,y)=ln (x)+s in(y)

1.Donner l'imagede (e,0).

2.D onnerleplus granddomainede d´efinitionpossibl epourf.

Solution:

1.f(e,0)=ln(e)+s in(0 )=1+0=1.

L'imagede(e,0)par fest1.

2.Pour queln(x)ex isteilfaut(etilsu"t)quex>0.Don cx&R

sin(y)ex istepourtouty&R.Doncy&R. Ainsileplusgra ndd omaineded´ efinitionpossiblepo urfest:R "R.

1.2Repr´es entationgraphiqued'unefonctionde

deuxvari ables

1.2.1D´efini tion

Avantdedonnerlad ´efinitio ndugraphed'unefonc tion dedeuxvariablesnous allonsrappeler cequ'estlegraphed'unefon ctiond 'unevariable.

D´efinition2.Soit

f:D#$R x%#$f(x)

Legra pheC

f def(fonctiond'uneseule variable)estl'ensemble despointsduplan deco ordonn´ees(x;f(x))avecx&D.

Celasenote :

C f ={(x,y)&R 2 |y=f(x),x&D}

1.2Repr ´esentationgraphiqued'unefonctiondedeuxvariab les7

Ainsipourtrac erlegraphed'un efonctiond'unevariab lenousavons rajout´e unenouvelle variabley.Legrap heestalorsunecourb edansleplan R 2 Pourlesfonct ionsded euxvariablesxetynousallonsaus sirajouterunevariablez etlegra ph eseraalorsunesurfac edel'espaceR 3

D´efinition3.Soit

f:D#$R (x,y)%#$f(x,y)

Legra pheS

f def(fonctiondedeuxvariables) estl'en sembledespoin tsdel'espace deco ordonn´ees(x;y;f(x,y))avec(x,y)&D.

Celasenote :

S f ={(x,y,z)&R 3 |z=f(x,y),(x,y)&D}

Remarque:

S f estunes urfacedan sR 3 Ach aquepoint(x,y)&DcorrespondunpointsurlasurfaceS f .Vo icicomment onplac elespointsdans unrep` ere. (x,y) z x y (x,y,f(x,y))

Figure1.1-Utilis atio nd'unrep`ere`a3dimensio ns.

Afindevous familiar iseraveclesgra phesdesfonctionsdedeuxva riablesvoici quelquesexemples.

1.2Repr ´esentationgraphiqued'unefonctiondedeuxvariab les9

Remarque:Cesdeuxderniersp lan snesontpa sdesrepr´ese ntationsgraphiq ues d'unefonctiond edeuxvariables(x,y).Ene !etnous nepouvonspas fairec orres- pondreunpointde(xOy)av ecunseulpoint decesp lans.

Exercice2.Soit

f:R 2 #$R (x,y)%#$x 2 +y 2

1.D´ eterminer,nommerettracerlaprojectiondans leplanxOzdeS

f {y=k} pourk=1;2;puispourk&R.

2.E stcequeS

f {y=k}estle graphed'une fonctiond'u nevariable?Sioui , laquelle?

3.D ´eterminer,nommerettracerlaprojectiondans leplanyOzdeS

f {x=0}.

4.Est cequeS

f {x=0}estle graphed'unef onctiond'une variable?Sioui, laquelle?

5.D ´etermineretnommerlaprojectiondansle planxOydeS

f {z=k}pour k=1;2;0;#1puispourk&R

6.Est cequeS

f {z=k}estle graphed'une fonctiond'u nevariable?Sioui , laquelle?

7.E nd´eduir elarepr´esentationgraphiquedef.

Solution:

1.-S f {y=1}={(x,y,z)&R 3 |z=x 2 +y 2 ,y=1}. S f {y=1}={(x,1,z)&R 3 |z=x 2 +1 2

Laproj ectiondansleplanxOzdeS

f {y=1}est: {(x,z)&R 2 |z=x 2 +1}

Nousobteno nsuneparab oledesommet(0,1).

-La projec tiondansleplanxOzdeS f {y=2}est: {(x,z)&R 2 |z=x 2 +4}

Nousobteno nsuneparab oledesommet(0,4).

-La projec tiondansleplanxOzdeS f {y=k}est: {(x,z)&R 2 |z=x 2 +k 2

Nousobteno nsuneparab oledesommet(0,k

2

10Fonctionsdeplusieursvariables

x z k 2

Figure1.4-Cou ped eS

f parleplany=k. 2.S f {y=k}estlegrap hed elafonctiond'uneseulev ariable : f y=k :R#$R x%#$x 2 +k 2 3.S f {x=0}={(x,y,z)&R 3 |z=x 2 +y 2 ,x=0}. S f {x=0}={(0,y,z)&R 3 |z=0+y 2

Laproj ectiondansleplanyOzdeS

f {x=0}est: {(y,z)&R 2 |z=y 2

Nousobte nonsuneparabo ledesommet(0,0).

4.S f {x=0}estlegraph ede lafonctiond'uneseulev ariable: f x=0 :R#$R y%#$y 2 5.-S f {z=1}={(x,y,z)&R 3 |z=x 2 +y 2 ,z=1}. S f {z=1}={(x,y,1)&R 3 |1=x 2 +y 2

Laproj ectiondansleplanxOydeS

f {z=1}est: {(x,y)&R 2 |1=xquotesdbs_dbs1.pdfusesText_1
[PDF] fonctions de plusieurs variables. 364 exercices corrigés pdf

[PDF] fonctions exponentielles et logarithmes exercices résolus

[PDF] fonctions holomorphes exercices corrigés

[PDF] fonctions logarithmes et exponentielles exercices corrigés

[PDF] fonctions logiques exercices corrigés

[PDF] fonctions numériques exercices corrigés pdf

[PDF] fond d'éclaircissement coiffure

[PDF] fond d'oeil bébé 1 an

[PDF] fond d'oeil bébé prématuré

[PDF] fond d'oeil durée

[PDF] fond d'oeil nourrisson

[PDF] fond de carte empire byzantin

[PDF] fond de carte etats unis bac

[PDF] fond de carte monde

[PDF] fondation hassan 2 telephone