[PDF] M4 – OSCILLATEUR HARMONIQUE Cela permet par ailleurs de





Previous PDF Next PDF



Forces de frottement (ou friction) Forces de frottement visqueux

On décrit donc les forces de frottement par des lois empiriques: fluide v r. F frot r. F frot = k r v. Loi de Stokes k = 6 R pour boule de rayon R.



Cours de mécanique - M12-Chute libre avec frottements

Par exemple pour une sphère de rayon r on a k = 6??r où ? est la viscosité du fluide. Frottements quadratiques. Dans le cas d'une vitesse importante



Chapitre 2 : Viscosité

Dans un fluide réel les forces de contact ne sont pas perpendiculaires aux la formation d'un profil de vitesse à cause des forces de frottement [5].



Electromagnétisme A Particule chargée dans un champ électrique

La puissance de la force de Lorentz est P = q E.v (unité: W) Mouvement freiné par le fluide frottement – k v avec formation.



Chute verticale dans un fluide - Nanopdf

Unités : P en N; m en kg et g en N.kg-1 ou en m.s-2 ( unité qui peut être trouvée fluide à un ensemble de forces de frottement équivalentes à une force ...



M4 – OSCILLATEUR HARMONIQUE

Cela permet par ailleurs de conserver la linéarité des équations puisque la force de frottement visqueux est proportionnelle à la vitesse2. a Ressort vertical 



Modélisation et Simulation Cours 2 : Modélisation pour la physique

1 Modélisation des forces de frottement fluide boulet de canon sans et avec frottement param`etres. (unités SI) : m = 10 g = 9.81 v0 = 100 ? = 30? k = 1.



PHQ114: Mecanique I

30. svi 2018. Ceci signifie qu'une force de frottement agit sur ... est la force par unité de surface exercée sur un élément de fluide à la position r par.



Cours de physique générale

6. ožu 2009. On décrit donc les forces de frottement par des lois empiriques : ... fluide v r. F frot r. F frot =k r v. Loi de Stokes k = 6 R pour boule.



Chapitre 3 : Mouvement amorti à un degré de liberté

mécanique soumis à une force de frottement de type visqueux. Avec m est la masse du corps k est le coefficient de rappel et x est le déplacement du.

M4 - OSCILLATEUR HARMONIQUE

I Mod`ele de l"oscillateur harmonique (O.H.)

I.1 ExemplesÜCf Cours

I.2 D´efinition

♦D´efinition :Unoscillateur harmonique`a un degr´e de libert´ex(X,θ, ...) est un syst`eme physique dont l"´evolution au cours du temps en l"absence d"amortissement et d"excitation, est r´egie par l"´equation diff´erentielle lin´eaire : (EOH)

¨x+ω20x= 0o`uω0est la pulsation propre.

Rq :On rencontrera cette situation en

´electricit´e pour un circuit s´erie contenant une inductanceL, une capacit´eCet une r´esistance R. Enr´egime libre, c"est `a dire sans excitation, et en l"absence d"amortissement (R= 0), la charge qaux bornes du condensateur v´erifie :

¨q+1

LCq= 0ÜCf CoursE4

L"importance du concept d"oscillateur harmonique vient dece qu"il d´ecrit le comportement g´en´eral d"un syst`eme `a un degr´e de libert´eau voisinage d"une position d"´equilibre stable. Donc, le mod`ele de l"oscillateur harmonique est tr`es utile pour un probl`eme unidimensionnelet une forceconservativequi ne d´epend que d"une variable x(ÜCf CoursM3) I.3 Description du mouvement de l"oscillateur harmonique •La solution g´en´erale de l"´equation diff´erentielle est : x(t) =Xmcos(ω0t+?) , avec : -ω0la pulsation propredu mouvement (enrad.s-1, -Xml"amplitude, -?la phase(`a l"origine des temps). •Xmet?sont d´etermin´es `a partir desconditions initiales(C.I.) : a)x(t= 0) =Xmcos?=x0 b) x(t= 0) =-Xmω0sin?= x0=v0. ♦D´efinition :Les oscillations d"un oscillateur harmonique sont purement si- nuso¨ıdales etla p´eriode propredes oscillations est :

T0=2πω0

LorsqueT0ne d´epend pas de l"amplitude des oscillations, on dit qu"il yaisochro- nismedes oscillations. Rq :On peut encore ´ecrirex=Xmcos?cosω0t-Xmsin?sinω0tou encore x=Acosω0t+Bsinω0t

M4I. Oscillateur Harmonique2008-2009

o`uAetBsont des constantes `a d´eterminer par les conditions initiales. Cette relation est parfois

pratique. En tenant compte desC.I.:

A=Xmcos?=x0etB=Xmsin?=-v0

ω0?x(t) =x0cos(ω0t) +v0ω0sin(ω0t)

Xm=⎷A2+B2=?x20+?v0ω0?

2 et tan?=-BA=-v0ω0x0avec cos?du signe dex0. I.4

´Energie(s) de l"oscillateur harmonique

♦D´efinition :(ÜCf CoursM3) L"Oscillateur Harmonique `a un degr´e de libert´ex´evolue dans unpuits parabolique d"´energie potentielle:

Ep(x) =Ep(0) +12kx2

Ceci revient `a dire que l"Oscillateur Harmonique est soumis `a uneforce conservative:

F(x) =-dEpdx=-kx

Cas du ressort vertical (cf. I.1) :

•Grˆace `a cette expression deF(x), on retrouve, bien entendu, l"´equation du mouvement de

l"Oscillateur Harmonique : m¨x=F(x)?¨x+ω20x= 0 avec :ω0=? k m

O`u"x»est la variable notant l"écart par rapport à la position d"équilibrede l"oscillateur harmo-

nique, soitX=x-xeqavecxeq=x0+mg k; d"où : E p=1

2kX2=12k?

(x-x0)-mgk?

2=12k(x-x0)2

E p,elast-mgx???? E p,g+Cste

ÜL"énergie potentielle de l"oscillateur harmonique est bien la somme de ses différentes formes

d"énergies potentielles.

Ici, il s"agit de l"énergie potentielle élastique(prise nulle enx=x0) et del"énergie potentielle de

pesanteur(prise nulle enx= 0), la Cste permettant de choisir l"origine de l"énergie potentielle totale enx=xeq. •ÜCf.Cours.

• La solution de l"équation différentielle étant de la formex=Xmcos(ω0t+?)et de périodeT0,

toutes les grandeursgdécrivant le mouvement sont également périodiques de périodeT0et leurs

valeurs moyennes sont définies par : < g >≡1T0? t t

0g(t)dtavect≡t0+T0ett0quelconque

ÜLa valeur moyenne des énergies cinétique et potentielle sont donc égale à : ≡1T0? T0 0E kdtet≡1T0? T0 0E pdt

2http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009II. Oscillateur HarmoniqueM4

...Cf.Cours...D"où : =1

4mw20X2m=14kX2m=14mw20X2m=14kX2m

On décrit cette égalité en disant qu"il y aéquipartition de l"énergie.

(Sous-entendu : l"énergie mécanique ,en moyenne, se répartit autant en énergie cinétique qu"en

énergie potentielle).

I.5 Portrait de phase d"un oscillateur harmonique

♦D´efinition :On appelleportrait de phased"un syst`eme `aun degr´e de libert´e, dont l"´evolution est d´ecrite par la variablex(t), un diagramme caract´eristiques des ´evolutions du syst`eme repr´esent´e dans leplan de phase(x,x)(ÜCf CoursM1).

• On a vu auI.4), pour leressortmodélisé par un oscillateur harmonique, que la conservation

de l"énergie mécanique (Intégrale Première du Mouvement) donne uneéquation du type : 1

2mx2+12kx2=Em=Cste soit, encore :x22Em

k+ x2 2Em m= 1 →On reconnaît l"équationx2 a2+x2b2= 1d"uneellipsede demi-axes : a=? 2Em k=? 2Em mω20selonxetb=?

2ω20Em

k=? 2Em mselonx. • L"ensemble des ellipses correspondant aux valeurs deEmpossibles constitue leportrait de phase del"oscillateur harmoniqueNON amorti et libre(non excité).

ÜCf.Cours

ÜCf.Poly: dans le cas du pendule simple, la modélisation de l"oscillateur harmoniqueest

valable lorsque le portrait de phase est assimilable à une ellipse. Ce qui est le cas pour les faibles

l g ellipses, il n"y a plus isochronisme des petites oscillations et on établit la formule deBorda: T?T0?

1 +α2

16? qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/3

M4II. Oscillateur harmonique Spatial2008-2009

II Oscillateur harmonique spatial

Définition :On parle d"oscillateur harmonique spatiallorsque les équations décrivant l"évolution

du système peuvent se mettre sous la forme de 3 équations de la forme :???m¨x+k1x= 0 m¨y+k2y= 0 m¨z+k3z= 0x,y,zétant 3 variables indépendantes (par ex. les coordonnées cartésiennes)

De solution générale :

?x=Xmcos(ω1t+?1) y=Ymcos(ω2t+?2) z=Zmcos(ω3t+?3)avecω2i=ki mpouri= 1, 2, 3. Conclusion :Le mouvement se caractérise par desoscillationscorrespondant à3 oscillateurs harmoniques indépendants.

Exemple : Oscillateur Harmonique SpatialIsotrope

• Soit un point matérielMrepéré par le vecteur-→r=--→OMpar rapport à un pointOfixe du référen-

tiel d"étude (supposé galiléen). À la datet= 0, il a la position-→r0=---→OM0et une vitesse-→v0.

Il est soumis à la force-→F=-k-→r.

• LeP.F.D.s"écrit :md2-→r dt2=-k-→r, soit encore : d

2-→r

dt2+ω20-→r=-→0avec :ω20≡km

• La solution s"écrit :-→r=-→Acosω0t+-→Bsinω0t, où-→Aet-→Bsont des vecteurs à déterminer en

fonction desConditionsInitiales. →En utilisant :-→r(t= 0) =-→r0, on déduit :-→A=-→r0 →Avecd-→r

dt(t= 0) =--→A ω0sinω0t+-→B ω0cosω0t, on déduit :d-→rdt(t= 0) =-→v0=-→B ω0.

Finalement :

-→r=-→r0cosω0t+-→v0 ω0sinω0t, ce qui montre quele mouvement se fait dans leplan passant parOet déterminé par les directions de-→r0et-→v0.

• Définissons un repère en prenant l"axeOxsuivant-→r0et l"axeOydans le plan de la trajectoire.

En projetant l"équation de-→rsur les axes, on a :???x=r0cosω0t+v0x

ω0sinω0t

y=v0y ω0sinω0toùv0xetv0ysont les composantes de-→v0. →On obtient bien2 oscillateurs indépendants1.

•L"équation de la trajectoires"obtient en éliminant le tempstà l"aide de la relationsin2ω0t+

cos

2ω0t= 1.

On isole donc :?????sinω0t=ω0y

v0y cosω0t=x r0-yv0xr0v0yon a alors :? v20xr20v20y+ω20v20y? y

2+x2r20-2xyv0xr20v0y= 1

→Cl :La trajectoire est donc uneellipse centrée enO.

1. Le fait qu"il n"en apparaˆıt que 2 au lieu des trois attendus vient du choix judicieux du rep`ereOxypour

exprimer la trajectoire plane

4http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009II. Oscillateur harmonique SpatialM4

Ce qui se voit bien dans le cas particulierv0x= 0où l"équation devient : x 2 r20+y2v20y

ω20= 1?x2

a2+y2b2= 1 aveca=r0etb=|v0y|

ω0.

OxyM0v

0r0 Qu"en est-t-il de l"énergie potentielle d"un oscillateur harmonique spatial?

Un raisonnement similaire au précédent (cf. §4) mais tenant compte, cette fois, des trois équations

scalaires du mouvement issues duP.F.D.conduit à : E m=?1

2mx2+12k1x2?

+?12my2+12k2y2? +?12mz2+12k3z2?

→Retenonsque l"énergie mécanique d"un oscillateur harmonique spatial est lasommedes éner-

gies mécaniques destroisoscillateurs harmoniques associés à sestroisdegrés de liberté.

On reconnaît l"énergie cinétique :Ek=1

2mx2+12my2+12mz2

et il apparaît l"énergie potentielle :Ep=1

2k1x2+12k2y2+12k3z2.

Cl :Un oscillateur harmonique spatial correspond donc à un point matériel soumis à uneforce conservative:

F≡ -?∂Ep

∂x? y,z-→ex-?∂Ep∂y? x,z-→ey-?∂Ep∂z? Et pour l"oscillateur harmonique spatial isotrope?

Ce qui précède est toujours valable bien sûr , puisque l"O.H.S.I. est un cas particulier d"O.H.S.

où la force de rappel est colinéaire au vecteur position :

F≡ -k-→r

=-kx-→ex-ky-→ey-kz-→ezce qui signifie :k1=k2=k3.

Ce qui revient à dire que l"énergie potentielle de l"oscillateur n"est fonction que de la distance

r=OMdu point matériel M au centre de forceO: E p=1

2kOM2=12kr2

Trajectoire d"un Oscillateur Harmonique Spatial Anisotrope : Lorsquek1,k2etk3ne sont pas tous identiques, la trajectoire peut être ouverte ou fermée :

±0.2

±0.1

0 0.1

0.2±0.8

±0.4

0 0.4

0.8±1

0123±0.2

quotesdbs_dbs1.pdfusesText_1
[PDF] force de frottement solide

[PDF] force dynamique et force statique

[PDF] force électrique conservative

[PDF] force electromotrice definition

[PDF] force electromotrice generateur

[PDF] force electromotrice pile daniell

[PDF] force electromotrice pile formule

[PDF] force et mouvement seconde

[PDF] force non conservative

[PDF] forces et faiblesses du système de santé ivoirien

[PDF] forces non conservatives exemple

[PDF] ford manuel utilisateur

[PDF] forfait free ? l'étranger

[PDF] forfait free international illimité

[PDF] forfait meditel