[PDF] TD4 – Extrema libres Exercice 1. Trouver les points critiques et





Previous PDF Next PDF



Exercices corrigés

Donner les extrema locaux de g et préciser s'ils sont globaux. Corrigé : 1. La fonction f est définie sur R2. 2. Pour tout (x y) ∈ R2



Exercices 9 - Extrema fonctions plusieurs variables.pdf

Les extre- mums locaux sont-ils des extremums absolus ? Exercice 9.2.— (M) Mêmes questions pour la fonction définie par f(x) = x3 (1 − 3.



Extremums locaux gradient

http://exo7.emath.fr/ficpdf/fic00065.pdf



Première S - Extremums dune fonction

e) La fonction admet-elle des extremums sur I ? En quels points ? f) La fonction admet-elle un extremum local en = 1 ? g) Donner une équation des tangentes 



TD 6 – EXTREMA LOCAUX

Exercice 31 – Rappel : extrema locaux de fonctions d'une variable réelle Ensuite déteminer le signe de f2 dans les points critiques : la fonction admet-elle ...



´Eléments de calculs pour létude des fonctions de plusieurs

Ainsi si f admet un extremum local alors celui-ci se trouve en (0; 0). Nous Extrema d'une fonction de deux variables. 4.3 Exercices du TD. Exercice 1 ...



Cours et exercices corrigés

2.3 Extremum local d'une fonction de deux variables . 2.8 Exercices corrigés .



Optimisation 1 Extrema

3 Exercices. Exercice 1. Étudier les extremums des fonctions suivantes : f(x) En étudiant le signe de f(x 0)



Exercices corrigés Fonctions de deux variables Fonctions convexes

f n'a donc pas d'extremum local sur Df . 6. On a vu que le cercle de centre (−1 −1) et de rayon. √. 2 (privé 



Exercices corrigés

La fonction g n'a donc pas de points critiques et pas d'extrema locaux sur Dg. Optimisation de g sous contrainte explicite. Pour tout (x



Extremums locaux gradient

http://exo7.emath.fr/ficpdf/fic00065.pdf



Première S - Extremums dune fonction

On appelle extremum de sur D son maximum ou son minimum. (s'il existe). D on dit que ou est un extremum local de sur D. Exemples.



´Eléments de calculs pour létude des fonctions de plusieurs

Les exercices `a faire en TD se trouvent `a la suite du cours et les corrections `a la 4.2 Extrémum local d'une fonction de plusieurs variables .



TD4 – Extrema libres Exercice 1. Trouver les points critiques et

Donc les points Phk sont des points de maximum local pour f. f) f(x



ANALYSE RÉELLE OPTIMISATION LIBRE ET SOUS CONTRAINTE

doivent être préparés : écouter le corrigé d'un exercice sans avoir préalablement essayé Déterminer les extrema locaux des fonctions suivantes sur R2.



M0SE 1003 Feuille 6 : Corrigé (tr`es) détaillé de lexercice 3

Feuille 6 : Corrigé (tr`es) détaillé de l'exercice 3. Exercice 3 des exercices en contrôle et au DS: ... Ces points sont donc des extrêma locaux.



Exercices de mathématiques - Exo7

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche [005557]. Exercice 6 **T. Trouver les extrema locaux de ... Correction de l'exercice 1 ?.



Exercices corrigés Fonctions de deux variables Fonctions convexes

f n'a donc pas d'extremum local sur Df . 6. On a vu que le cercle de centre (?1 ?1) et de rayon. ?. 2 (privé 



Topologie et Calcul Différentiel 2MA216

5.1 Extremum local et extremum global . 5.2 Points critiques et extrema . ... Ce polycopié est parsemé d'exercices dont les corrigés sont fournis en ...



Feuille d’exercices 9 - Université Sorbonne Paris Nord

Feuille d’exercices 9 Points critiques et extrema des fonctions de deux variables 1 Extremums des fonctions d’une variable Exercice 9 1 — Soit la fonction d’une variable d´e?nie par f(x) = 3x4 ?2x6 1 Trouver les points critiques de f 2 Calculer les DLs a l’ordre 2 en chacun de ces points (Question facultative : pouvez-vous



Différentielles secondes extremums - e Math

Exercice 1 Calculez D2 f(x) dans les cas suivants: 1 f 2L(E;G) continue 2 f : E F !G bilinéaire continue 3 f : M n(R)!M n(R) f(A)=A2 Correction H [002553] Exercice 2 Etudier les extrémas locaux et globaux des fonctions suivantes: 1 f(x;y)=x2 +xy+y2 + 1 4 x 3 2 f(x;y)=x2y x2=2 y2 3 f(x;y)=x4 +y4 2(x y)2 4 f(x;y)=sin2 x sh2 y 5 f(x;y

Comment calculer un extrémum local ?

un extrémum local si elle présente en a un maximum local ou un minimum local. On suppose dans la suite que f est une fonction de classe C^1 sur un ouvert U de mtr^2, et soit ain U . Montrer que si f présente un extremum en a, alors les dérivées partielles de f en a sont nulles.

Quels sont les extremums d’une fonction ?

Extremums d’une fonction | Lelivrescolaire.fr Soient I un intervalle ouvert et c un réel de I.

Comment déterminer les valeurs de X pour lesquelles la fonction f semble admettre des extremums locaux ?

1. Par lecture graphique, déterminer les valeurs de x pour lesquelles la fonction f semble admettre des extremums locaux. 2. a. Vérifier que la dérivée de f s'écrit sous la forme f ?(x) = ?1,5(x +1)(x? 2). b. Étudier les variations de f, dresser son tableau de variations puis retrouver les résultats de la question 1. .

Comment calculer les extrema locaux et globaux ?

Étudier les extrema locaux et globaux dans R2 de la fonction f(x, y) = x2y2(1 + x + 2y). Exercice 8 - En détails [Signaler une erreur] [Ajouter à ma feuille d'exos] Soit f(x, y) = y2 ? x2y + x2 et D = {(x, y) ? R2; x2 ? 1 ? y ? 1 ? x2}. Représenter D et trouver une paramétrisation de ?, le bord de D .

TD4 – Extrema libres Exercice 1. Trouver les points critiques et

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD4 - Extrema libres

Exercice 1.Trouver les points critiques et discuter leur nature pourf:R2→R a)f(x,y) = (x-1)2+ 2y2 b)f(x,y) = 2x3-6xy+ 3y2 c)f(x,y) =ex-y(x2-2y2) d)f(x,y) =x3y+x3-x2y e)f(x,y) = (x2+y2)e-(x2+y2) f)f(x,y) =x2-cos(y) g)f(x,y) =x3+y3-3cxy. h)f(x,y) =x2y3. Solution. Toutes les fonctionsa),···,h)sont de classeC2dansR2parce que elles sont compo- sition de fonctionsC2ou des polynômes. a)f(x,y) = (x-1)2+ 2y2On calcule le gradient : ?f(x,y) = (2x-2,4y). On cherche les points critiques comme solutions du système :

¨∂xf(x,y) = 0

yf(x,y) = 0

¨2x-2 = 0

4y= 0 La seule solution du système est donnée par le pointP= (1,0).

On calcule la matrice hessienne :

H f(x,y) =‚2 0

0 4Œ

La matrice hessienne est constante :

H f(1,0) =‚2 0

0 4Œ

On calcule le déterminant et la trace de l"hessienne : detHf(1,0) = 8>0, tr(Hf(1,0)) = 6>0 Dès que les déterminant ( resp. la trace ) est le produit (resp. la somme) des deux valeurs propres deHf(1,0), on peut conclure que les valeurs propres deHf(1,0)sont strictement positives. Cela c"est equivalent à dire queHf(1,0)est semi-définie positive.

Par consequence P est un point de minimum pourf.

1 b)f(x,y) = 2x3-6xy+ 3y2

On calcule le gradient :

?f(x,y) = (6x2-6y,-6x+ 6y) On cherche les points critiques comme solutions du système :

¨6x2-6y= 0

-6x+ 6y= 0 Les deux points critiques sontP1= (1,1)etP0= (0,0).

On calcule la matrice hessienne :

H f(x,y) =‚12x-6 -6 6Œ

PourP0on trouve :

H f(0,0) =‚0-6 -6 6Œ

On calcule le déterminant :

detHf(0,0) =-36<0, Dès que les déterminant est<0les deux valeurs propres de l"hessienne sont non nulles,

l"une négative et l"autre positive. Cela suffit à dire que l"hessienne n"est pas définie (ni

négative ni positive) et doncP0est un point -selle.

PourP1on trouve :

H f(1,1) =‚12-6 -6 6Œ

On calcule le déterminant et la trace :

detHf(1,1) = 36>0, tr(Hf(1,1)) = 18>0 Dès que les déterminant et la trace sont>0les deux valeurs propres de l"hessienne sont strictement positives. DoncP1est un point de minimum pourf. c)f(x,y) =ex-y(x2-2y2)

On calcule le gradient :

?f(x,y) =€ex-y(x2-2y2+ 2x),ex-y(-x2+ 2y2-4y)Š Puisque l"exponentielle est strictement>0on cherche les points critiques comme solutions du système :¨x2-2y2+ 2x= 0 -x2+ 2y2-4y= 0 Les deux points critiques sontP1= (-4,-2)etP0= (0,0).

On calcule la matrice hessienne :

H f(x,y) =‚ex-y(x2-2y2+ 4x+ 2)ex-y(-x2+ 2y2-2x-4y) e x-y(-x2+ 2y2-2x-4y)ex-y(x2-2y2+ 8y-4)Œ

PourP0on trouve :

H f(0,0) =‚2 0

0-4Œ

On calcule le déterminant :

detHf(0,0) =-8<0, 2 Dès que les déterminant est<0les deux valeurs propres de l"hessienne sont non nulles,

l"une négative et l"autre positive. Cela suffit à dire que l"hessienne n"est pas définie (ni

négative ni positive) et doncP0est un point -selle. PourP1on trouve : H f(-4,-2) =‚-6e-28e-2

8e-2-12e-2Œ

On calcule le déterminant et la trace :

detHf(-4,-2) = 8e-4>0, tr(Hf(-4,-2)) =-18e-2<0 Dès que les déterminant est>0et la trace est<0les deux valeurs propres de l"hessienne sont strictement négatives. DoncP1est un point de maximum pourf. d)f(x,y) =x3y+x3-x2y

On calcule le gradient :

?f(x,y) = (3x2y+ 3x2-2xy,x3-x2) Les points critiques sont solutions du système :

¨3x2y+ 3x2-2xy= 0

x

3-x2= 0

Les points critiques sontP0= (0,0),Pk= (0,k),k?= 0,P1= (1,-3).

On calcule la matrice hessienne :

H f(x,y) =‚6xy+ 6x-2y3x2-2x

3x2-2x0Œ

PourP1l"on trouve :

H f(1,-3) =‚-6 1

1 0Œ

On calcule le déterminant :

detHf(1,-3) =-1>0, tr(Hf(-4,-2)) =-18e-2<0 Dès que les déterminant est<0les deux valeurs propres de l"hessienne sont non nulles,

l"une négative et l"autre positive. Cela suffit à dire que l"hessienne n"est pas définie (ni

négative ni positive) et doncP1est un point -selle.

PourP0on trouve :

H f(0,0) =‚0 0

0 0Œ

et donc on peut rien déduire sur la nature du point critique. On regardefle long des directiony=xety=-x: g(x) =f(x,x) =x4 h(x) =f(x,-x) =-x4+ 2x3 On peut facilement vérifier que g(x) admet un minimum pourx= 0ethadmet un flex (point critique qui est ni minimum ni maximum) pourx= 0. Comme la fonction admet des comportement différentes le long des deux directions,P0ne peut pas être ni un maxi- mum ni un minimum pourf. Il est un point-selle. Le cask?= 0conduit à un calcul plus fastidieux et on le traite pas ici. 3 e)f(x,y) = (x2+y2)e-(x2+y2)

On calcule le gradient :

?f(x,y) =€e-x2-y22x(1-x2-y2),e-x2-y22y(1-x2-y2)Š Puisque l"exponentielle est strictement>0on cherche les points critiques comme solutions du système :¨2x(1-x2-y2) = 0

2y(1-x2-y2) = 0

Les points critiques sontP0= (0,0)et toutes points de la formePh,k= (h,k)telles que h

2+k2= 1.

On calcule la matrice hessienne :

H f(x,y) =‚e-x2-y2((2-4x2)(1-x2-y2)-4x2)e-x2-y2(-4xy(1-x2-y2)-4xy) e

On peut vérifier que :

detHf(P0) = detHf(Ph,k) = 0, et donc on ne peut rien conclure sur la nature des points critiques à l"aide du signe de l"hessienne.

Les pointP0est un point de minimum car :

f(x,y)≥0?(x,y)?R2 etf(x,y) = 0si et seulement si(x,y) = (0,0). Donc dans le voisinage du point critique P

0on a :

f(x,y)≥0 =f(0,0) et cela est la définition de minimum local. On peut voir facilement que les points critiques P h,ksont des points de maximum local. La fonctionf(x,y)est une fonction à symétrie radiale. Cela veut dire que si nous écrivonsfen cordonnées polaires(r,θ)nous trouverons que elle ne depend que par le rayonr. Il existe une fonction d"une variableg:R+?→R telle que : f(rcosθ,rsinθ) =g(r) =r2e-r2.

On calcule la dérivée de la fonctiong:

g?(r) = 2re-r2(1-r2). La fonctiongadmet deux points critiques :r= 0(correspondant àP0) etr= 1(corres- pondant aux pointsPh,k). Si on etude le signe deg?(r)pourr≥0on trouve quer= 0 est un minimum local pourgetr= 1est un maximum local pourg. Donc les pointsPh,k sont des points de maximum local pourf. f)f(x,y) =x2-cos(y)

On calcule le gradient :

?f(x,y) =€2x,sinyŠ On cherche les points critiques comme solutions du système :

¨2x= 0

siny= 0 Les points critiques sont toutes points de la formePk= (0,kπ),k?Z.

On calcule la matrice hessienne :

4 H f(x,y) =‚2 0

0 cosyŒ

H f(0,kπ) =‚2 0

0 coskπŒ

On calcule le déterminant :

detHf(0,kπ) = 2cos(kπ) Le termecos(kπ)vaut-1sikest impair et1si k est pair. Donc sikest impair ou trouve detHf(0,kπ)<0et le pointPkest un point-selle. Sikest pair on trouvedetHf(0,kπ)>0 ettrHf(0,kπ)>0et le point critique est un point de minimum. g)f(x,y) =x3+y3-3cxyOn se pose dans le cadrec?= 0.

On calcule le gradient :

?f(x,y) =€3x2-3cy,3y2-3cxŠ On cherche les points critiques comme solutions du système :

¨3x2-3cy= 0

3y2-3cx= 0

Les points critiques sontP0= (0,0)etPc= (c,c).

On calcule la matrice hessienne :

H f(x,y) =‚6x-3c -3c6yŒ

PourP0l"on trouve :

H f(0,0) =‚0-3c -3c0Œ

On calcule le déterminant :

detHf(0,0) =-9c2<0, Dès que les déterminant est<0les deux valeurs propres de l"hessienne sont non nulles,

l"une négative et l"autre positive. Cela suffit à dire que l"hessienne n"est pas définie (ni

négative ni positive) et doncP1est un point -selle.

PourPcl"on trouve :

H f(c,c) =‚6c-3c -3c6cŒ

On calcule le déterminant :

detHf(c,c) = 27c2>0 Dès que les déterminant est>0le point critique peut être ou un point de minimum ou un point de maximum. Sic >0on trouve : tr(Hf(c,c)) = 12c >0, et donc le point critique est un point de minimum. Sic <0on trouve : tr(Hf(c,c)) = 12c <0, et le point critique est un point de maximum. 5 h)f(x,y) =x2y3.

On calcule le gradient :

?f(x,y) =€2xy3,3x2y2Š On cherche les points critiques comme solutions du système :

¨2xy3= 0

3x2y2= 0

Les points critiques sont de la formePh= (0,h)etPk= (k,0).

On calcule la matrice hessienne :

H f(x,y) =‚2y36xy2

6xy26x2yŒ

On calcule le déterminant :

detHf(x,y) =-24x2y4 Toutes les points critiques annulent le déterminant , donc on ne peut pas conclure de façon générale. Plaçons nous au point critique(0,0). Pourε >0petit on a : f(ε,-ε) =-?5<0 f(ε,ε) =?5>0 ce qui permet d"affirmer que(0,0)est un point-selle. 6quotesdbs_dbs31.pdfusesText_37
[PDF] équilibre du producteur définition

[PDF] exercice microeconomie corrigé pdf

[PDF] exemple de qrc

[PDF] exercices corrigés sur le monopole

[PDF] méthodologie commentaire de texte

[PDF] extremum d'une parabole

[PDF] livre ezechiel pdf

[PDF] "une démonstration élémentaire de l'équivalence entre masse et énergie"

[PDF] e=mc2 exemple

[PDF] e=mc2 explication facile

[PDF] interview questions et reponses avec un chanteur

[PDF] question couple pour mieux se connaitre

[PDF] questionnaire marrant pour couple

[PDF] question pour son amoureux

[PDF] questionnaire couple a faire a deux